
Object Oriented and Agile Software Development
Part 2: Object Oriented Design and Design Patterns

Christine Solnon

INSA de Lyon - 4IF - 2022/2023

1/58 .



Overview

1 Introduction

2 Illustration of design patterns with PlaCo

3 Other GoF Patterns

2/58 .



Fundamental Principles of Object Oriented Design

Protected Variations: Identify points of variation or evolution, and separate
them from other parts

Low Coupling: Reduce the impact of modifications by minimising inter class
dependencies

High Cohesion: Ease the understanding, management and reuse of
classes by designing classes with single goals

Indirection: Decrease coupling and protect variations by adding
intermediate objects

Programming for interfaces: Decrease coupling and protect variations by
hiding implementation

Compose rather than inherit: Use composition instead of inheritance to
delegate a task to an object, dynamically change its behavior,
etc

etc...

These principles are applied in many Design Patterns!
3/58 .



Design Patterns

What is a Design Pattern?

Generic solution to a frequent problem
; Formalisation of best practices

How to describe a Design Pattern?

Name ; Design vocabulary

Problem: Description of the problem and its context

Solution: Description of the components and their
relations/cooperations/roles for solving the problem

Generic description
Illustration on an example

Consequence analysis: Time/memory complexity, impact on flexibility,
portability, variation protection, coupling, cohesion, ...

4/58 .



23 Patterns of the Gang of Four (GoF)
[E. Gamma, R. Helm, R. Johnson, J. Vlissides 1994]

Patterns illustrated with PlaCo at the beginning of this course:
Creation: Factory, Singleton
Behaviour: Iterator, State, Observer, Command, Visitor
Structure: FlyWeight

Patterns introduced at the end of this course:
Creation: Abstract factory
Behaviour : Strategy
Structure: Decorator, Adaptator, Facade, Composite

Pattern introduced for the project:
Behaviour: Template

Patterns that won’t be studied in this course:
Creation: Prototype, Builder
Behaviour: Chain of resp., Interpretor, Mediator, Memento
Structure: Bridge, Proxy

5/58 .



Overview

1 Introduction

2 Illustration of design patterns with PlaCo

3 Other GoF Patterns

6/58 .



PlaCo (Recalls from Part 1)

A sawmill wants a system for drawing plans and transfer them to a wood
cutting machine.

A plan is a rectangle with an height and a width.

The system must be able to add, delete and move shapes on a plan, to
save and load plans, and to transfer a plan to the cutting machine.

A shape is a rectangle or a circle:

A rectangle has an height and a width, and its position is defined by
its upper left corner coordinates;
A circle has a radius, and its position is defined by its centre
coordinates.

Coordinates and length are integer values expressed with respect to
some given unit. Shapes must have empty intersections.

Download the Java code of PlaCo on Moodle or at:
http://perso.citi-lab.fr/csolnon/PlaCo.jar

7/58 .



Use Case Diagram of PlaCo (Recalls from Part 1)

8/58 .



Polymorphism (not a GoF pattern...)

Problem:
In the future, the client would like to cut other kinds of shapes (triangles,
ellipses, ...)

Solution: Use polymorphism

Define an interface or an abstract class Shape
; Declare public methods common to all shapes

Define classes (Circle, Rectangle, ...) that implement or extend Shape

Use polymorphism to treat instances of these classes in a uniform way

Implemented principles:

Programming for interfaces

Protected variations

9/58 .



10/58 .



GoF Pattern: Iterator (1/3)

Problem:
The development team may change the data structure used to store shapes

Solution:
Use Iterators to traverse all elements of a collection without knowing the data
structure used to implement the collection

Implemented principles:

Programming for interfaces

Protected variations

High cohesion

11/58 .



GoF Pattern: Iterator (2/3)

What should we change to use Vector instead of ArrayList?

Why separating Iterator from Collection ?

12/58 .



GoF Pattern: Iterator (3/3)

Separating Iterator from Collection makes it possible to have several
iterators on a same collection at a same time

13/58 .



Model-View-Controller Architecture (Recalls from 3IF)

Problems:

The user may require to change the way she interacts with PlaCo:

Use a dropdown menu (instead of buttons) to trigger use cases
Add a textual description of the plan (besides the graphical view)
Change the way coordinates are entered when adding a new shape
to the plan
etc

The technology used for the GUI may change

Plan is less cohesive if it contains instructions for displaying shapes

Solution:
MVC Architecture!

14/58 .



MVC Architecture: Illustration with PlaCo

Model: Update and treat Data

Update Data when adding/deleting/moving shapes in the plan

Check that shapes have empty intersections

View: Display Model and interact with the user

Display the plan (graphically and as a textual list of shapes)

Detect actions from the user (mouse click, key pressed, etc)

Controller: Translates user interactions with View into actions

Ask Model to move selected shapes when the user presses arrows

... etc

Implemented principles: Protected variations and High cohesion

15/58 .



MVC Architecture: Illustration with Placo

Problem: How to notify View that Model has been modified?

Solution 1: Model sends messages to View each time it is modified
Drawback: Model becomes dependent from View
Solution 2: Use the pattern Observer

16/58 .



MVC Architecture: Illustration with Placo

Problem: How to notify View that Model has been modified?

Solution 1: Model sends messages to View each time it is modified
Drawback: Model becomes dependent from View
Solution 2: Use the pattern Observer

16/58 .



GoF Pattern: Observer (aka Publish/Subscribe) (1/2)

...etc

17/58 .



GoF Pattern: Observer (aka Publish/Subscribe) (1/2)

...etc

17/58 .



GoF Pattern: Observer (aka Publish/Subscribe) (1/2)

...etc

17/58 .



GoF Pattern: Observer (aka Publish/Subscribe) (2/2)

Generic Solution [Wikipedia]:

Principles implemented:

Low coupling between ConcreteObserver and Subject
Protected variations: Observers are added without modifying Subject

How does ConcreteObserver get Subject data?

Push data with notify or pull them with getters

18/58 .



java.util.Observer and java.util.Observable deprecated since Java 9

Why? (according to Oracle)

The event model supported by Observer and Observable is quite limited

The order of notifications delivered by Observable is unspecified

State changes are not in one-for-one correspondence with notifications

Alternative solutions:

java.beans for a richer event model

java.util.concurrent for reliable and ordered messaging among threads

Flow API for reactive streams style programming

But this doesn’t mean that the design pattern isn’t good!

It is used in Listeners

It is easy to implement and customise

19/58 .



GoF Pattern: Visitor (1/3)

Problem:
The actual classes of Shape instances are lost

Solution 1: Test the classes of Shape instances before displaying them

Solution 2: Use Visitor

20/58 .



GoF Pattern: Visitor (2/3)

21/58 .



GoF Pattern: Visitor (3/3)

Generic solution [Wikipedia]: Implemented principles:

High cohesion: Group into
each Visitor realisation all
methods related to a same
goal (graphical view, textual
view, XML serialisation, ...)
for all subclasses of Element

Protected variations: New
Visitor realisations may be
added without modifying
ConcreteElement

22/58 .



Current Architecture of PlaCo

How does the user interact with PlaCo?

Window uses event listeners

How to identify the events that must be listened?

By looking at Use Cases

23/58 .



Current Architecture of PlaCo

How does the user interact with PlaCo?
Window uses event listeners

How to identify the events that must be listened?

By looking at Use Cases

23/58 .



Current Architecture of PlaCo

How does the user interact with PlaCo?
Window uses event listeners

How to identify the events that must be listened?

By looking at Use Cases

23/58 .



Using Use Cases to Identify Events

Each use case is activated by an
event:

Click on a button
Selection of a menu item
...etc...

Scenarios describe user actions:
; Lines starting by "The user ..."

24/58 .



Identification of events from scenarios

Example: Add a rectangle

1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1, p2) in the plan and

displays the plan

Extension [1-5a]: The user tells the system she wants to cancel the action

User events:
Left click on the button "Add a rectangle"
Left click on the graphical view of the plan
Right click or [Esc]

25/58 .



Identification of events from scenarios

Example: Add a rectangle

1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1, p2) in the plan and

displays the plan

Extension [1-5a]: The user tells the system she wants to cancel the action

User events:
Left click on the button "Add a rectangle"
Left click on the graphical view of the plan
Right click or [Esc]

25/58 .



Identification of events from scenarios

Example: Add a rectangle

1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1, p2) in the plan and

displays the plan

Extension [1-5a]: The user tells the system she wants to cancel the action

User events:
Left click on the button "Add a rectangle"
Left click on the graphical view of the plan
Right click or [Esc]

25/58 .



Identification of events from scenarios

Example: Add a rectangle

1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1, p2) in the plan and

displays the plan

Extension [1-5a]: The user tells the system she wants to cancel the action

User events:
Left click on the button "Add a rectangle"
Left click on the graphical view of the plan
Right click or [Esc]

25/58 .



Example of GUI and List of User Events for PlaCo

User Events:
Click on a button: Add a circle, Add a rectangle, . . . , Undo, Redo
Key stroke: [→], [←], [↑], [↓], [Ctr Z], [Shift Ctr Z], [Esc]
Left click on the graphical view
Right click on the graphical view
Mouse move on the graphical view

Note: This GUI may not be the most user-friendly one...
We study here how to design PlaCo so that we can easily change the GUI!

26/58 .



Example of GUI and List of User Events for PlaCo

User Events:
Click on a button: Add a circle, Add a rectangle, . . . , Undo, Redo
Key stroke: [→], [←], [↑], [↓], [Ctr Z], [Shift Ctr Z], [Esc]
Left click on the graphical view
Right click on the graphical view
Mouse move on the graphical view

Note: This GUI may not be the most user-friendly one...
We study here how to design PlaCo so that we can easily change the GUI!

26/58 .



What do Listeners do when catching a user event?

They send a message to Controller

Illustration with ButtonListener:

27/58 .



What Does Controller Do?

Controller has a method for each user event:

How to define these methods?

Exploit use case scenarios
28/58 .



Illustration on leftClick(Point p)

Main scenario of the use case “Add a rectangle”:

1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1, p2) in the plan

Steps 3 and 5 are triggered by leftClick(Point p)

Problem:
The behaviour of leftClick(Point p) depends on the current scenario step:

Step 1: Ignore the event
Step 3: Ask the user to enter the coordinates of a second point
Step 5: Add the rectangle to the plan

; Draw a Statechart diagram
29/58 .



StateChart Diagram for “Add a rectangle”
1 The user clicks on the button "Add a rectangle"
2 The system asks to enter the coordinates of a first corner
3 The user clicks on a point p
4 The system creates a small rectangle r at point p and visualizes it
5 The user moves the mouse to another point p
6 The system updates the size of r wrt p
7 The user clicks on another point p
8 The system updates the size of r wrt p and returns to the initial state

Extension [1-8a]: The user cancels the action with a right click

30/58 .



StateChart Diagram for “Add a rectangle”
1 The user clicks on the button "Add a rectangle"
2 The system asks to enter the coordinates of a first corner
3 The user clicks on a point p
4 The system creates a small rectangle r at point p and visualizes it
5 The user moves the mouse to another point p
6 The system updates the size of r wrt p
7 The user clicks on another point p
8 The system updates the size of r wrt p and returns to the initial state

Extension [1-8a]: The user cancels the action with a right click

30/58 .



StateChart Diagram for “Add a rectangle”
1 The user clicks on the button "Add a rectangle"
2 The system asks to enter the coordinates of a first corner
3 The user clicks on a point p
4 The system creates a small rectangle r at point p and visualizes it
5 The user moves the mouse to another point p
6 The system updates the size of r wrt p
7 The user clicks on another point p
8 The system updates the size of r wrt p and returns to the initial state

Extension [1-8a]: The user cancels the action with a right click

30/58 .



StateChart Diagram for “Add a rectangle”
1 The user clicks on the button "Add a rectangle"
2 The system asks to enter the coordinates of a first corner
3 The user clicks on a point p
4 The system creates a small rectangle r at point p and visualizes it
5 The user moves the mouse to another point p
6 The system updates the size of r wrt p
7 The user clicks on another point p
8 The system updates the size of r wrt p and returns to the initial state

Extension [1-8a]: The user cancels the action with a right click

30/58 .



StateChart Diagram of PlaCo

Each transition event corresponds to a method of Controller 31/58 .



GoF Pattern: State (1/3)

Problem:
The behaviour of Controller when receiving leftClick(p) depends on its state

Solution 1:
Controller has an attribute currentState to memorise its state

When launching PlaCo, currentState is set to INITIAL_STATE
When events occur, currentState is updated according to the
Statechart Diagram

leftClick(p) contains a case for each possible state:
If currentState = INITIAL_STATE then ignore left clicks
If currentState = CIRCLE_STATE1 then create a new circle and set
currentState to CIRCLE_STATE2
...etc...

Pros and Cons?

Solution 2: Use the State Pattern

32/58 .



GoF Pattern: State (2/3)

Controller delegates actions to currentState:

State defines default actions:

How to define method signatures?
Parameters = all objects needed to achieve actions

Each class that implements State overrides some
methods according to the Statechart Diagram

How does Controller change its state?

Protected method setCurrentState in Controller

How do we get State instances?

Solution 1: Create a new instance for each
state change

Solution 2: Use Singletons (see later)

Solution 3: Controller has a protected attribute
for each state

Pros and Cons?

33/58 .



GoF Pattern: State (2/3)

Each class that implements State overrides some
methods according to the Statechart Diagram

How does Controller change its state?

Protected method setCurrentState in Controller

How do we get State instances?

Solution 1: Create a new instance for each
state change

Solution 2: Use Singletons (see later)

Solution 3: Controller has a protected attribute
for each state

Pros and Cons?

33/58 .



GoF Pattern: State (2/3)

Each class that implements State overrides some
methods according to the Statechart Diagram

How does Controller change its state?

Protected method setCurrentState in Controller

How do we get State instances?

Solution 1: Create a new instance for each
state change

Solution 2: Use Singletons (see later)

Solution 3: Controller has a protected attribute
for each state

Pros and Cons?

33/58 .



GoF Pattern: State (2/3)

Each class that implements State overrides some
methods according to the Statechart Diagram

How does Controller change its state?

Protected method setCurrentState in Controller

How do we get State instances?

Solution 1: Create a new instance for each
state change

Solution 2: Use Singletons (see later)

Solution 3: Controller has a protected attribute
for each state

Pros and Cons?

33/58 .



Code of the leftClick method

In Controller:

In State:

In CircleState1:

In CircleState2:

34/58 .



GoF Pattern: State (3/3)

Generic solution:
[Wikipedia]

Implemented principles:

High cohesion: Each ConcreteState contains all methods of events that
have an effect on it

Protected variations: Adding a new state is easy (but adding a new event
is more tedious)

Programming for interfaces

35/58 .



Current Architecture of PlaCo

Problem: How can we implement undo/redo?

36/58 .



GoF Pattern: Command (1/2)

Controller: InitialState:

37/58 .



GoF Pattern: Command (1/2)

ListOfCommands:

37/58 .



GoF Pattern: Command (1/2)

AddCommand:

37/58 .



GoF Pattern: Command (1/2)

ReverseCommand:

37/58 .



GoF Pattern: Command (1/2)

DeleteState:

37/58 .



GoF Pattern: Command (2/2)

Generic Solution:
Client creates instances of
ConcreteCommand

Invoker asks for commands to
be executed

ConcreteCommande
delegates the execution to
Receiver

Remarks:

The reception of a request is separated from its execution

The roles of Client and Invoker may be played by a same class

May be used to undo or redo some commands after a failure

38/58 .



Sequence Diagram

39/58 .



Current Architecture of PlaCo

Problem: Numerous instances of Point are created
40/58 .



Patterns GoF: FlyWeight and Factory

Solution:

A same instance is shared for all points with the same coordinates
; Warning: the instance must be changed when moving a point!

A factory is used to create instances

41/58 .



Patterns GoF: FlyWeight and Factory

Solution:

A same instance is shared for all points with the same coordinates
; Warning: the instance must be changed when moving a point!

A factory is used to create instances

41/58 .



Patterns GoF: FlyWeight and Factory

Solution:

A same instance is shared for all points with the same coordinates
; Warning: the instance must be changed when moving a point!

A factory is used to create instances

41/58 .



Current Architecture of PlaCo

Some Use Cases are still missing!

; Load/Save a plan from/to an XML file

42/58 .



Current Architecture of PlaCo

Some Use Cases are still missing!

; Load/Save a plan from/to an XML file

42/58 .



Class Diagram of the xml package

How to send messages to XMLfileOpener from any class of xml?

Transform methods of XMLfileOpener into static methods?
; Not possible if XMLfileOpener extends fileFilter

Use a Singleton
43/58 .



GoF Pattern: Singleton

XMLfileOpener can have only one instance, and this instance is visible by all
classes of the package
; XMLfileOpener.getInstance()

Warning:

May be considered as an anti-pattern... To be used with moderation!

44/58 .



Overview

1 Introduction

2 Illustration of design patterns with PlaCo

3 Other GoF Patterns

45/58 .



23 Patterns of the Gang of Four (GoF)
[E. Gamma, R. Helm, R. Johnson, J. Vlissides]

Patterns illustrated with PlaCo:
Creation: Factory, Singleton
Behaviour: Iterator, State, Observer, Command, Visitor
Structure: FlyWeight

Patterns introduced in the next slides:
Creation: Abstract factory
Behaviour : Strategy
Structure: Decorator, Adaptator, Facade, Composite

Pattern introduced for the project:
Behaviour: Template

Patterns that won’t be studied in this course:
Creation: Prototype, Builder
Behaviour: Chain of resp., Interpretor, Mediator, Memento
Structure: Bridge, Proxy

46/58 .



GoF Pattern: Abstract factory (1/2)

Problem:
Create a family of objects without specifying their concrete classes

Illustration on an example:
Create a GUI with widgets (buttons, menus, ...)
Point of variation: OS (Linux or OSX)

return new ButtonLinux(...);

GUIfactoryOSX GUIfactoryLinux

MenuLinux

+actionMenu(...) +actionMenu(...)

MenuOSX

Menu
+actionMenu(...)

ClientAbstractGUIfactory
...

...

1

* *

AbstractGUIfactory f;

...

if (..) f=new GUIfactoryOSX();
else f=new GUIfactoryLinux();

+createButton(...)
+createMenu(...)

+createButton(...)
+createMenu(...)

+createButton(...)
+createMenu(...)

+display(...)

Button

ButtonLinux
+display(...)

ButtonOSX
+display(...)

Menu m=f.createMenu(...);
Button b=f.createButton(...);

}

public Button createButton(...){

47/58 .



GoF Pattern: Abstract factory(2/2)

Generic Solution [Wikipedia]:
Remarks:

AbstractFactory and
AbstractProduct usually are
interfaces
; Programming for interfaces

createProductX() methods are
factory methods

Advantages of the pattern:
Indirection: Isolate Client from
product implementations

Protected variations: Make it easy to
change product families

Consistency is automatically
ensured

But adding new products is more tedious

48/58 .



GoF Pattern: Strategy (1/3)

Problem:
How to dynamically change the behaviour of an object?

Illustration on an example:

In a video game, characters fight monsters...
; method fight(Monster m) of class Character

...and the code of fight may be different from a character to an other one
Sol. 1: fight contains a case for each kind of fight
Sol. 2: The class Character is specialised in subclasses that
override fight

Sol. 3: Strategy pattern = Character delegates fight to classes that
encapsulate fight code and all realise a same interface

Represent these solutions with UML. Can we easily:
Add a new kind of fight?
Change the kind of fight of a character?

49/58 .



GoF Pattern: Strategy (1/3)

Problem:
How to dynamically change the behaviour of an object?

Illustration on an example:

In a video game, characters fight monsters...
; method fight(Monster m) of class Character

...and the code of fight may be different from a character to an other one
Sol. 1: fight contains a case for each kind of fight
Sol. 2: The class Character is specialised in subclasses that
override fight
Sol. 3: Strategy pattern = Character delegates fight to classes that
encapsulate fight code and all realise a same interface

Represent these solutions with UML. Can we easily:
Add a new kind of fight?
Change the kind of fight of a character?

49/58 .



GoF Pattern: Strategy (2/3)

of FightStyle corresponding 

to level?

How to create the instance

50/58 .



GoF Pattern: Strategy (2/3)

50/58 .



GoF Pattern: Strategy (3/3)
Generic Solution:
[Wikipedia]

Remarks:
Principles implemented:

Indirection: Context is isolated from Strategy implementations
; Protected variations
Compose rather than inherit to dynamically change strategies

How to transfer information from Context to Strategy?

Push: Use parameters of AlgorithmInterface()
Pull: Use getters of the context (and pass the context as a
parameter of AlgorithmInterface()

51/58 .



GoF Pattern: Adapter

Problem:
How to provide a stable interface (Adaptor) to a component whose interface
may change (Adaptee)

Generic Solution [Wikipedia]:

Principles implemented = indirection and protected variations
52/58 .



GoF Pattern: Facade

Problem:
Provide a simplified interface (Facade)

Generic Solution [Wikipedia]:

Principles implemented = indirection and protected variations

53/58 .



GoF Pattern: Decorator (1/2)

Problème:
Dynamically add new responsibilities to an object

Illustration on an example:

Pizza p=new PizzaClassical();

Pizza

#pizza

1

@override

}

@override

}

this.pizza = p;
}

super(p);
}

describe()

PizzaClassicalPizzaSpecial

describe()

getPrice()

getPrice() getPrice()

describe()

getPrice()

describe()

...

...

Example of utilisation :

p = new Cheese(p);
p = new Ham(p);

public DecoratorPizza(Pizza p){

return pizza.getPrice();

public double getPrice(){

DecoratorPizza

public double getPrice(){

return cheesePrice 

+ super.getPrice();

Cheese

getPrice()

describe()

Onion

getPrice()

describe()

Ham

getPrice()

describe()

public Ham(Pizza p){

54/58 .



GoF Pattern: Decorator (2/2)

Generic Solution:

[Wikipedia]

Remarks:
Compose rather than inherit:
Dynamically add responsibilities to
ConcreteComponent without
modifying its code

n decors ⇒ 2n combinations

Drawback: May generate a lot of
wrapper objects

Utilisation for extending input/output Java Classes:

Component: InputStream, OutputStream

ConcreteComponent: FileInputStream, ByteArrayInputStream, ...

Decorator: FilterInputStream, FilterOutputStream

ConcreteDecorator: BufferedInputStream, CheckedInputStream, ...
55/58 .



Adapter, Facade and Decorator

Common points:

Indirection ; Wrapper

Protected variations

Differences:

Adapter: Convert an interface into an other one (needed by a Client)

Facade: Provide a simplified interface

Decorator: Dynamically add responsibilities to methods of a class
without modifying its code

56/58 .



GoF Pattern: Composite (1/2)

Problème:
Represent hierarchies and uniformly treat component and compound objects

Illustration on an example:

<?xml version="1.0"?>
<livres>

<livre>
<titre>Guerre et paix</titre>
<auteur>Tolstoï</auteur>
<nbPages>1572</nbPages>

</livre>
<livre>

<titre>20 ans après</titre>
<auteur>Dumas</auteur>
<publication>

<ed>Lebègue</ed>
<date>1848</date>

</publication>
</livre>

</livres>

How to count the number
of tags?

:EltCompXML

tag="livre"

:EltCompXML

tag="livre"

:EltCompXML

tag="livres"

:EltSimpleXML

tag="titre"
val="Guerre et paix"

:EltCompXML

tag="publication"

:EltSimpleXML

tag="auteur"
val="Dumas"

:EltSimpleXML

tag="titre"
val="20 ans après"

:EltSimpleXML

tag="ed"
val="Lebègue"

:EltSimpleXML

tag="date"
val="1848"

tag="auteur"

:EltSimpleXML

val="Tolstoi"

:EltSimpleXML

tag="nbPages"
val="1572"

57/58 .



GoF Pattern: Composite (2/2)

Generic Solution [Wikipedia]:

58/58 .


	Introduction
	Illustration of design patterns with PlaCo 
	Other GoF Patterns

