
Prescriptive Data Analytics

Christine Solnon

5IF - 2022-2023

1/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

2/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data

What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAI)

Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future

What will be traffic conditions in 30 mn?

Prescriptive Analytics :
Assist decision making / Make decisions

What is the best route if I leave at 8:25?

3/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data

What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAI)

Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future

What will be traffic conditions in 30 mn?

Prescriptive Analytics :
Assist decision making / Make decisions

What is the best route if I leave at 8:25?

3/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data

What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAI)

Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future

What will be traffic conditions in 30 mn?

Prescriptive Analytics :
Assist decision making / Make decisions

What is the best route if I leave at 8:25?

3/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data

What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAI)

Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future

What will be traffic conditions in 30 mn?

Prescriptive Analytics :
Assist decision making / Make decisions

What is the best route if I leave at 8:25?

3/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

4/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

4

1

2

3

5

6

4/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

8

1

2

3

4

6

5

12

4/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

20

1

2

3

4

6

5

12

8

13

10

5

8

7

9

14

12

6
9

13

4

7

8

23

19

8

12

6

9

10

11

10
7

10

5

17

4/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

1

2

3

4

6

5

12

8

13

10

5

8

7

9

14

12

6
9

13

4

7

8

23

19

8

12

6

9

10

11

10
7

10

5

17
20

4/85

Some Classical Variants

Vehicle Routing Problem (VRP)

Deliveries are associated with demands
There are several vehicles with limited capacities

Pickup and Delivery Problem (PDP)

Each request is composed of a pickup point and a delivery point
 A delivery point cannot be visited before its corresponding pickup point

Dial A Ride Problem (DARP)
PDP with a limited capacity vehicle

Addition of Time Windows (TSP-TW, VRP-TW, PDP-TW, DARP-TW)
Each point i must be visited within a time-window

Various objective functions:

Travel duration, Arrival time, Number of vehicles, ...

5/85

What’s difficult in classical problems?

Compute shortest paths between two points?
Easy and well solved problem:

Efficient algorithms (polynomial time)
 For example, Dijkstra or A*

Compute optimal tours in the shortest path graph?

NP-hard problems

Theory: No algorithm can compute the optimal solution in polynomial
time (unless P = NP)

Practice: Use Artificial Intelligence!

6/85

What’s difficult in classical problems?

Compute shortest paths between two points?
Easy and well solved problem:

Efficient algorithms (polynomial time)
 For example, Dijkstra or A*

Compute optimal tours in the shortest path graph?

NP-hard problems

Theory: No algorithm can compute the optimal solution in polynomial
time (unless P = NP)

Practice: Use Artificial Intelligence!

6/85

New Data for New Problems

Classical problems:

All Data are known when optimising tours Deterministic Problems

Travel durations are constant Constant Problems

Ex: Average travel duration on section 18 = 42, ...

New Data New Problems:

Probability distributions Stochastic Problems
Ex: Probability(travel duration on section 18 = 42) = 0.4, ...

Real-time Data revealed when realising tours Online Problems
Ex: Actual travel duration on section 18 = 58

Data which depends on time Time-Dependent Problems
Ex: Travel duration at 8:00 = 42; Travel duration at 8:15 = 47; ...

7/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

8/85

Context of this work

ASTRAL project [2014-2017]:

Funded by IMU LabEx

Partners: LICIT (IFSTTAR), LIRIS, and Métropole de Lyon

Goal: Design predictive models for traffic forecasting in city centres

PhD thesis of Julien Salotti (defended in 2019):

Co-supervised with R. Billot, N.-E. El Faouzzi, and S. Fenet

Contributions:

Experimental evaluation of predictive models
Integration of causal information in predictive models

9/85

How to measure traffic conditions?

Spatio-temporal trajectories coming from the use of applications:

Examples: GPS, Mobile phone
communications with cellular
networks

Cons: Privacy issues, Spatial errors,
Representativity issues, Property
issues, ...

(Image from Romain Billot)

Electro-magnetic sensors:

Physical detection of vehicles

Cons: Incomplete spatial coverage

10/85

Data coming from electro-magnetic sensors

Dataset provided by Lyon Metropole:

634 sensors
Two measures every 6 minutes:

Flow: Nb of vehicles per time period
Density: Nb of vehicles per road
segment

Fundamental diagram:

Estimate speed given flow and density:

Fluid traffic: flow increases when
density increases

Congested traffic: flow decreases
when density increases

Reference:
Buisson and Lesort (2010): Comprendre le trafic
routier : Méthodes et calculs

11/85

https://www.researchgate.net/profile/Christine-Buisson/publication/312063695_Comprendre_le_trafic_routier_Methodes_et_calculs/links/5893590292851c545748c68b/Comprendre-le-trafic-routier-Methodes-et-calculs.pdf
https://www.researchgate.net/profile/Christine-Buisson/publication/312063695_Comprendre_le_trafic_routier_Methodes_et_calculs/links/5893590292851c545748c68b/Comprendre-le-trafic-routier-Methodes-et-calculs.pdf

Flow measured by sensors 1 (top) and 27 (bottom):
Monday 01/14/2013 Wednesday 01/16/2013 Friday 01/18/2013 Sunday 01/20/2013

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

DÃ©bit capteur 1 - 14 janvier 2013
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

DÃ©bit capteur 1 - 16 janvier 2013
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

DÃ©bit capteur 1 - 18 janvier 2013
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

DÃ©bit capteur 1 - 20 janvier 2013

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250

DÃ©bit capteur 1 - 14 janvier 2013
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250

DÃ©bit capteur 1 - 16 janvier 2013
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250

DÃ©bit capteur 1 - 18 janvier 2013
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200 250

DÃ©bit capteur 1 - 20 janvier 2013

Density measured by sensors 1 (top) and 27 (bottom):
Monday 01/14/2013 Wednesday 01/16/2013 Friday 01/18/2013 Sunday 01/20/2013

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

Taux occupation capteur 1 - 14 janvier 2013
 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

Taux occupation capteur 1 - 16 janvier 2013
 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

Taux occupation capteur 1 - 18 janvier 2013
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250

Taux occupation capteur 1 - 20 janvier 2013

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Taux occupation capteur 1 - 14 janvier 2013
 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Taux occupation capteur 1 - 16 janvier 2013
 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Taux occupation capteur 1 - 18 janvier 2013
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

Taux occupation capteur 1 - 20 janvier 201312/85

Predictive models: short term predictions (less than 1 hour)

Compared approaches:
Univariate (U) vs Multivariate (M)
Variable selection (S)
Linear (L) vs Non Linear (NL)

Method L NL U M S
ARIMA x x
VAR x x
LASSO x x

kNN-uni x x
kNN-multi x x
kNN-Lasso x x
kNN-TigSB x x
SVR-RBF-uni x x
SVR-RBF-multi x x
SVR-RBF-Lasso x x

Mean Absolute Scaled
Error (MASE) :

1 2 3 4 5
0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
A

S
E

 (
fo

r
Ly

on
 d

at
as

et
)

Method

Lasso
VAR
ARIMA

Reference:
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in
urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:
Univariate (U) vs Multivariate (M)
Variable selection (S)
Linear (L) vs Non Linear (NL)

Method L NL U M S
ARIMA x x
VAR x x
LASSO x x
kNN-uni x x
kNN-multi x x
kNN-Lasso x x
kNN-TigSB x x

SVR-RBF-uni x x
SVR-RBF-multi x x
SVR-RBF-Lasso x x

Mean Absolute Scaled
Error (MASE) :

1 2 3 4 5
0.7

0.8

0.9

1.0

1.1

1.2

1.3
Method

KNNMulti
KNNLasso
KNNTigSB
KNNUni

Reference:
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in
urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:
Univariate (U) vs Multivariate (M)
Variable selection (S)
Linear (L) vs Non Linear (NL)

Method L NL U M S
ARIMA x x
VAR x x
LASSO x x
kNN-uni x x
kNN-multi x x
kNN-Lasso x x
kNN-TigSB x x
SVR-RBF-uni x x
SVR-RBF-multi x x
SVR-RBF-Lasso x x

Mean Absolute Scaled
Error (MASE) :

1 2 3 4 5
0.7

0.8

0.9

1.0

1.1

1.2

1.3
Method

SVRRBFLasso
SVRRBFMulti
SVRRBFUni

Reference:
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in
urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:
Univariate (U) vs Multivariate (M)
Variable selection (S)
Linear (L) vs Non Linear (NL)

Method L NL U M S
ARIMA x x
VAR x x
LASSO x x
kNN-uni x x
kNN-multi x x
kNN-Lasso x x
kNN-TigSB x x
SVR-RBF-uni x x
SVR-RBF-multi x x
SVR-RBF-Lasso x x

Mean Absolute Scaled
Error (MASE) :

1 2 3 4 5
0.7

0.8

0.9

1.0

1.1

1.2

1.3
Method

KNNMulti
SVRRBFLasso
Lasso
SVRRBFUni

Reference:
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in
urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Examples of forecasting (with kNN-multi):

14/85

Predictive models: long term predictions

Clustering of days for each sensor:

Group days with similar time series
May be done by exploiting knowledge or automatically

Build a representative time series for each cluster:

For each time step, search for a representative value
 For example, the median

Example: Median flow (blue) over 20 days (green) for two sensors

15/85

Representation of predictive models for temporal series

Temporal serie = one measure per time step (e.g., 6 minutes):

V
al

eu
r

Temps

Mesure
Fonction continue

 Models = one prevision per time step

Representation with piecewise
linear functions:

Temps

V
al

eu
r

Representation with piecewise
constant functions:

Temps

V
al

eu
r

16/85

How to exploit these predictions to optimise delivery tours?

When preparing the tour (the day before):

Minimize tour durations by exploiting speed predictions

Take into account the fact that speed is not constant through the day

 Optimisation with Time-Dependent (TD) Data

While performing the delivery tour:

Adapt the tour when observed events are different from predicted ones
(unexpected events)

Anticipate on likely events by exploiting statistics on past events

 Optimisation with Uncertain Data

17/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

18/85

Context of this work

PhD thesis of Penélope Aguiar Melgarejo (defended in 2016):

Funded by IBM and co-supervised with Philippe Laborie (IBM)
Algorithms for optimizing with Time-Dependent Data

Computation of the duration of a path
Computation of shortest paths
Solve the TD-ATSP with Constraint Programming (CP)

Post-doc of Omar Rifki (2018/2019):

Funded by IMU and co-supervised with Nicolas Chiabaut (LICIT)
Experimental evaluation on realistic datasets
 Is it worth exploiting Time Dependent Data?

PhD thesis of romain Fontaine (started in 2020):

Funded by “enjeu transport” and co-supervised with Jilles S. Dibangoye
Algorithms for solving Time-Dependent VRPs

Adv.: New PhD starting in 2023 Tell me if you are interested!
19/85

Definition of the problem

Input Data:

A set S of delivery points and a warehouse v0

A start time t0
For each road segment (i , j) and each time t :
d(i , j , t) = travel time from i to j when leaving i at time t

Output:

A sequence of road segments that:
Starts from v0, visits each point of S, and returns to v0

Minimises the arrival time when leaving v0 at t0

Solution process in two steps:
1 Compute quickest paths for each possible start time
 TD cost function for each couple of delivery points

2 Solve the TD-ATSP

20/85

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
1 Function Dijkstra-TD(g,d , t0, s0)
2 for each vertex si do h[si]← +∞;
3 h[s0]← t0; Put all vertices of g in a priority queue F
4 while F is not empty do
5 remove from F the vertex si s.t. h[si] is minimal
6 for each vertex sj ∈ succ(si) do
7 if h[si] + d(si , sj ,h[si]) < h[sj] then
8 h[sj]← h[si] + d(si , sj ,h[si])
9 update F

10 return h

Condition for Dijkstra to be correct?

Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

21/85

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
1 Function Dijkstra-TD(g,d , t0, s0)
2 for each vertex si do h[si]← +∞;
3 h[s0]← t0; Put all vertices of g in a priority queue F
4 while F is not empty do
5 remove from F the vertex si s.t. h[si] is minimal
6 for each vertex sj ∈ succ(si) do
7 if h[si] + d(si , sj ,h[si]) < h[sj] then
8 h[sj]← h[si] + d(si , sj ,h[si])
9 update F

10 return h

Condition for Dijkstra to be correct?

Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

21/85

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
1 Function Dijkstra-TD(g,d , t0, s0)
2 for each vertex si do h[si]← +∞;
3 h[s0]← t0; Put all vertices of g in a priority queue F
4 while F is not empty do
5 remove from F the vertex si s.t. h[si] is minimal
6 for each vertex sj ∈ succ(si) do
7 if h[si] + d(si , sj ,h[si]) < h[sj] then
8 h[sj]← h[si] + d(si , sj ,h[si])
9 update F

10 return h

Condition for Dijkstra to be correct?

Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

21/85

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
1 Function Dijkstra-TD(g,d , t0, s0)
2 for each vertex si do h[si]← +∞;
3 h[s0]← t0; Put all vertices of g in a priority queue F
4 while F is not empty do
5 remove from F the vertex si s.t. h[si] is minimal
6 for each vertex sj ∈ succ(si) do
7 if h[si] + d(si , sj ,h[si]) < h[sj] then
8 h[sj]← h[si] + d(si , sj ,h[si])
9 update F

10 return h

Condition for Dijkstra to be correct?

Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

b

a

c d

2

1

1

10 if t ≤ 2

1 if t > 2

When leaving a at 0: cost of 〈a, b, c, d〉 = 4
cost of 〈a, c, d〉 = 11

21/85

Computation of quickest paths with TD data

To ensure the correctness of Dijkstra, d must satisfy the FIFO property:

If t1 < t2 then t1 + d(i , j , t1) ≤ t2 + d(i , j , t2)
 We cannot arrive sooner if we leave later
If d is not FIFO, then searching for shortest paths is NP-hard

Example of non FIFO function: How to make it FIFO?

References:

Kaufman, Smith (1993): Fastest paths in time-dependent networks for intelligent vehicle-highway systems

Ichoua, Gendreau, Potvin (2003): Vehicle dispatching with time-dependent travel times

22/85

https://www.tandfonline.com/doi/abs/10.1080/10248079308903779
https://www.sciencedirect.com/science/article/abs/pii/S0377221702001479

Non Exhaustive Literature Review on the TD-TSP
Problem Constraints Solving approach

Authors (Year) TSP VRP TW Q Exact Heuristic
Malandraki & Daskin (1992) X X X X ILP

Malandraki & Dial (1996) X DP RDP
Schneider (2002) X LS

Ichoua et al (2003) X X LS
Fleischmann et al (2004) X X Greedy

Haghani & Jung (2005) X X X GA
Eglese et al (2006) X X X LS

Van Woensel et al (2008) X X LS
Donati et al (2008) X X X ACO
Ehmke et al (2012) X X Greedy

Kanoh & Ochiai (2012) X ACO
Figliozzi (2012) X X X Greedy

Cordeau et al (2014) X ILP
Melgarejo et al (2015) X CP

Montero et al (2017) X X ILP
Vu et al (2018) X X ILP

Arigliano et al (2019) X X ILP
Sun et al (2020) X X X LS

Vu et al (2020) X X ILP
Rifki et al (2020) X X X X DP

Fontaine et al (2022) X X DP
23/85

https://pubsonline.informs.org/doi/10.1287/trsc.26.3.185
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/S0378437102010786
https://www.sciencedirect.com/science/article/abs/pii/S0377221702001479
https://www.jstor.org/stable/25769188
https://www.sciencedirect.com/science/article/abs/pii/S0305054804000887
https://www.sciencedirect.com/science/article/abs/pii/S0305054805001243
https://www.sciencedirect.com/science/article/abs/pii/S0377221707003116
https://www.sciencedirect.com/science/article/abs/pii/S0377221706006345
https://www.sciencedirect.com/science/article/abs/pii/S1877750312000087
https://link.springer.com/chapter/10.1007/978-3-642-28765-7_4
https://doi.org/10.1016/j.tre.2011.11.006
https://pubsonline.informs.org/doi/10.1287/trsc.1120.0449
https://hal.archives-ouvertes.fr/hal-01163394/document
https://www.sciencedirect.com/science/article/abs/pii/S0305054817301612
https://optimization-online.org/2018/05/6640/
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S1366554519303734
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://hal.archives-ouvertes.fr/hal-02934134/document
https://hal.archives-ouvertes.fr/hal-03865036/document

Dynamic Programming (DP) for the TSP

Bellman equations for a set V of points (with warehouse=0):

∀i ∈ V ,∀S ⊆ V \ {0}: let p(i ,S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

If S = ∅, then p(i ,S) = d(0, i)

Otherwise p(i ,S) = minj∈S p(j ,S \ {j}) + d(j , i)

k

i0

j

j

j

1

2

k

p(j ,S\{j })

p(j ,S\{j })

1 1

p(j ,S\{j })2 2

k

 Computation of p(0,V \ {0}) in O(|V |2 · 2|V |)

Reference:
Held, Karp (1962): A dynamic programming approach to sequencing
problems

24/85

https://epubs.siam.org/doi/10.1137/0110015
https://epubs.siam.org/doi/10.1137/0110015

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

C, {B} D, {B} B, {C} D, {C} B, {D} C, {D}

D, {B,C} C, {B,D} B, {C,D}

A, {B,C,D}

2 2 1

10 10 3 53 5

5

3 10
10

5 3

1
2

2

2 2 1

12 5 12 7 4 6

15 10 10

12

25/85

DP for the TSP

Bellman equations for a set V of points (with warehouse=0):

∀i ∈ V ,∀S ⊆ V \ {0}: let p(i ,S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

If S = ∅, then p(i ,S) = d(0, i)
Otherwise p(i ,S) = minj∈S p(j ,S\{j}) + d(j , i)

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space
 Anytime and exact approach

References:
Malandraki, Dial (1996): A restricted dynamic programming heuristic
algorithm for the TD-TSP
Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

∀i ∈ V ,∀S ⊆ V \ {0}: let p(i ,S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

If S = ∅, then p(i ,S) = d(0, i , t0)

Otherwise p(i ,S) = minj∈S p(j ,S\{j}) + d(j , i ,p(j ,S\{j}))

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space
 Anytime and exact approach

References:
Malandraki, Dial (1996): A restricted dynamic programming heuristic
algorithm for the TD-TSP
Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

∀i ∈ V ,∀S ⊆ V \ {0}: let p(i ,S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

If S = ∅, then p(i ,S) = d(0, i , t0)

Otherwise p(i ,S) = minj∈S p(j ,S\{j}) + d(j , i)

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space
 Anytime and exact approach

References:
Malandraki, Dial (1996): A restricted dynamic programming heuristic
algorithm for the TD-TSP
Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12

B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

10

2

27/85

Illustration on a small example

A

C

B

D

2

3

5

2

10

1

start from A

B, ∅ C, ∅ D, ∅

B, {D} C, {D}

C, {B,D}

A, {B,C,D}

2 2 1

3 5

10

2

2 2 1

4 6

14

16

C, {B} D, {B}

10 3

12 5

5

10

12

12
B, {C} D, {C}

10 5

12 7

B, {C,D}

10

16

3

102

27/85

Anytime and Exact DP-based approach for the
TD-TSPTW (FON22)

Combine ACS with:

Local search to converge faster towards better solutions

Bounding and time window propagation to prune the state space

Reference:
Fontaine, Dibangoye, Solnon (2022): Exact and Anytime approach for solving
the TD-TSP-TW

28/85

https://hal.archives-ouvertes.fr/hal-03865036/document
https://hal.archives-ouvertes.fr/hal-03865036/document

Recent ILP approaches for the TD-TSP with Time Windows

Exploitation of common congestion patterns (ARI19):

Computation of bounds by considering suitable-defined constant costs
 the more arcs share a same congestion pattern, the tighter the bound
State-of-the-art results on instances with common congestion patterns

Dynamic Discretization Discovery (VU20):

Dynamic time step refinement to strengthen time-indexed ILP models
State-of-the-art results on instances with very tight time windows

References:
Arigliano, Ghiani, Grieco, Guerriero, Plana (2019): Time-dependent
asymmetric traveling salesman problem with time windows: Properties
and an exact algorithm
Vu, Hewitt, Boland, Savelsbergh (2020): Dynamic Discretization
Discovery for Solving the Time-Dependent Traveling Salesman Problem
with Time Windows

29/85

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911

Comparison of ARI19 (ILP) with FON22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

∆ is used to control congestion pattern similarity
 The closer ∆ to 1, the more common congestion patterns
β is used to control time window tightness
 The closer β to 1, the tighter the time window

Percentage of solved instances within 1h:
Pattern B1 Pattern B2

∆=.70 ∆=.80 ∆=.90 ∆=.95 ∆=.98 ∆=.70 ∆=.80 ∆=.90 ∆=.95 ∆=.98
ARI19 β=0 23 43 67 93 100 0 7 23 60 100

β=.25 33 53 90 100 100 7 30 63 90 97
β=.5 17 23 70 87 97 7 13 47 67 97
β=1 80 73 83 87 100 73 60 67 77 77

FON22 β=0 67 67 67 67 67 83 80 70 70 70
β=.25 100 100 100 100 100 100 100 100 100 100
β=.5 100 100 100 100 100 100 100 100 100 100
β=1 100 100 100 100 100 100 100 100 100 100

ARI19 is sensitive to β and to ∆

FON22 is sensitive to β, but not to ∆
30/85

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827

Comparison of ARI19 (ILP) with FON22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

∆ is used to control congestion pattern similarity
 The closer ∆ to 1, the more common congestion patterns
β is used to control time window tightness
 The closer β to 1, the tighter the time window

Percentage of solved instances within 1h (on different computers...):
Pattern B1 Pattern B2

∆=.70 ∆=.80 ∆=.90 ∆=.95 ∆=.98 ∆=.70 ∆=.80 ∆=.90 ∆=.95 ∆=.98
ARI19 β=0 23 43 67 93 100 0 7 23 60 100

β=.25 33 53 90 100 100 7 30 63 90 97
β=.5 17 23 70 87 97 7 13 47 67 97
β=1 80 73 83 87 100 73 60 67 77 77

FON22 β=0 67 67 67 67 67 83 80 70 70 70
β=.25 100 100 100 100 100 100 100 100 100 100
β=.5 100 100 100 100 100 100 100 100 100 100
β=1 100 100 100 100 100 100 100 100 100 100

ARI19 is sensitive to β and to ∆

FON22 is sensitive to β, but not to ∆
30/85

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827

Comparison of VU20 (ILP) with FON22 (DP)

Randomly generated instances of [Vu et al 2020]

Same model as [Arigliano et al 2019]
Instances with very tight time windows only (β = 1)
n ∈ {60,80,100} (240 instances per value of n)

Solving times (on different computers...):

FON22
(240)

VU20
(239)

10−1

100

101

102

103

Ti
m

e
(s

)

n=60

FON22
(240)

VU20
(235)

n=80

FON22
(240)

VU20
(227)

n=100

FON22 solves all instances within 1h
VU20 fails on 19 instances and is more than 1 order slower

31/85

https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911

Is the TD-TSP-TW harder than the TSP-TW?

Solving times of FON22 with TD costs (x) and constant costs (y):

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

TS
PT

W
 S

ol
vi

ng
 ti

m
e

β=0.25
n=21
n=31
n=41

10−3 10−2 10−1 100 101 102 103

β=0.5

10−3 10−2 10−1 100 101 102 103

β=1.0

TDTSPTW Solving time

 Yes, much harder for most instances!

Is it worth spending much more time?

To answer this question, we must consider realistic TD cost functions!

32/85

Construction of a realistic benchmark

Utilisation of a simulator (SymuVia, LICIT) of the Lyon road network:

Different levels of sensor coverage:
DLyon: real sensor positions (cover=7%)
Dσ with σ ∈ {10,20, ...,100}: cover=σ% (evenly distributed)

 Values for uncovered road segments are interpolated
Different time-step length l ∈ {6,12,24,60,720} (l = 720⇔ static case)

Reference:
Rifki, Chiabaut, Solnon: On the impact of spatio-temporal granularity of traffic conditions on the
quality of pickup and delivery optimal tours

33/85

https://hal.archives-ouvertes.fr/hal-02934134/document
https://hal.archives-ouvertes.fr/hal-02934134/document

How to compare tours optimised on different Data?
 Illustration on an artificial example

3

0 2

1

1st time-step of 6mn

3

2

4 2

3
3

3

0 2

1

2nd time-step of 6mn

3

6

4 2

5
9

3

0 2

1

1st time-step of 12mn

3

4

4 2

4
6

3

0 2

1

Constant cost function

4

4

5 8

3
2

Best : T 6 = 〈0, 3, 1, 2, 0〉
Arrival time = 10

Realistic travel time rtt = 10

T 12 = 〈0, 1, 2, 3, 0〉
Arrival time = 14

rtt = 17

T 720 = 〈0, 2, 3, 1, 0〉
Arrival time = 14

rtt = 19

Evaluate all tours with a same cost function
Use the cost function which is the closest to real conditions
 Realistic travel time (rtt) computed with l = 6mn and σ = 100%

34/85

How to compare tours optimised on different Data?
 Illustration on an artificial example

3

0 2

1

1st time-step of 6mn

3

2

4 2

3
3

3

0 2

1

2nd time-step of 6mn

3

6

4 2

5
9

3

0 2

1

1st time-step of 12mn

3

4

4 2

4
6

3

0 2

1

Constant cost function

4

4

5 8

3
2

Best : T 6 = 〈0, 3, 1, 2, 0〉
Arrival time = 10

Realistic travel time rtt = 10

T 12 = 〈0, 1, 2, 3, 0〉
Arrival time = 14

rtt = 17

T 720 = 〈0, 2, 3, 1, 0〉
Arrival time = 14

rtt = 19

Evaluate all tours with a same cost function
Use the cost function which is the closest to real conditions
 Realistic travel time (rtt) computed with l = 6mn and σ = 100%

34/85

How to compare tours optimised on different Data?
 Illustration on an artificial example

3

0 2

1

1st time-step of 6mn

3

2

4 2

3
3

3

0 2

1

2nd time-step of 6mn

3

6

4 2

5
9

3

0 2

1

1st time-step of 12mn

3

4

4 2

4
6

3

0 2

1

Constant cost function

4

4

5 8

3
2

Best : T 6 = 〈0, 3, 1, 2, 0〉
Arrival time = 10

Realistic travel time rtt = 10

T 12 = 〈0, 1, 2, 3, 0〉
Arrival time = 14

rtt = 17

T 720 = 〈0, 2, 3, 1, 0〉
Arrival time = 14

rtt = 19

Evaluate all tours with a same cost function
Use the cost function which is the closest to real conditions
 Realistic travel time (rtt) computed with l = 6mn and σ = 100%

34/85

How to compare tours optimised on different Data?
 Illustration on an artificial example

3

0 2

1

1st time-step of 6mn

3

2

4 2

3
3

3

0 2

1

2nd time-step of 6mn

3

6

4 2

5
9

3

0 2

1

1st time-step of 12mn

3

4

4 2

4
6

3

0 2

1

Constant cost function

4

4

5 8

3
2

Best : T 6 = 〈0, 3, 1, 2, 0〉
Arrival time = 10

Realistic travel time rtt = 10

T 12 = 〈0, 1, 2, 3, 0〉
Arrival time = 14

rtt = 17

T 720 = 〈0, 2, 3, 1, 0〉
Arrival time = 14

rtt = 19

Evaluate all tours with a same cost function
Use the cost function which is the closest to real conditions
 Realistic travel time (rtt) computed with l = 6mn and σ = 100%

34/85

Question 1: Can we find better tours when using TD Data?

Performance measure:

Gap between T 720 and T l with l ∈ {6,12,24,60} = rtt(T 720)−rtt(T l)
rtt(T l)

× 100

Results when σ = 100%:

Time−step length (in minutes)

0%

10%

20%

−10%

−20%

G
ap

Answer to Question 1:
When σ = 100%: Yes, and the smaller the time step the larger the gain
When σ = Lyon: No

35/85

Question 1: Can we find better tours when using TD Data?

Performance measure:

Gap between T 720 and T l with l ∈ {6,12,24,60} = rtt(T 720)−rtt(T l)
rtt(T l)

× 100

Results when σ = 100%:

Time−step length (in minutes)

0%

10%

20%

−10%

−20%

G
ap

Results when σ = Lyon:

Time−step length (in minutes)
G

ap

20%

10%

0%

−10%

−20%

Answer to Question 1:
When σ = 100%: Yes, and the smaller the time step the larger the gain
When σ = Lyon: No

35/85

Question 2: What is the impact of l and σ on tour quality?

Performance measure:

Gap between T (l,σ) and T (6,100) = rtt(T (l,σ))−rtt(T (6,100))
rtt(T (6,100))

× 100

Answer to Question 2:
The impact of l and σ increases when increasing n
It is worth exploiting TD data when σ = 100%: Tours computed with
l = 720mn are 8% as long as those computed with l = 6mn when n = 30
We’d better use constant data when σ ≤ 50%
 Interpolation doesn’t allow to compute good approximations of speed

36/85

Question 3: Does this impact change when adding constraints?

P1 = TD-ATSP
P2 = TD-PDP (TD-ATSP + precedence constraints)
P3 = TD-DARP (TD-PDP + capacity constraints with capacity qv = 2)

37/85

Question 3 (continued): What if we change the capacity qv ?

Answer to question 3:

When adding precedence or capacity constraints, the interest of
exploiting TD Data decreases because these constraints decrease the
number of valid tours

The tighter the constraints, the less interesting TD Data are

38/85

Question 4: Impact of l and σ on time window satisfaction?

Performance measure:
Percentage of tours for which TW are still satisfied when evaluating them with
l = 6 and σ = 100%

Results for TD-TW-ATSP when n = 40 and the number of TW ∈ {2,4,6}:
Width = 120mn Width = 60mn Width = 40mn

When TWs are very large (120mn), all tours are still feasible
except when using constant costs
When TWs are very tight (40mn), all tours are infeasible
Between these extreme cases, it is worth exploiting TD data
even when σ = 10%

39/85

What about the TD-DARP-TW?

Percentage of feasible tours:
(n = 60, q = 6, and TW length = 60)

Shortest paths durations:
(% wrt durations when l = 6 and σ = 100)

Feasibility is decreased when increasing l , even when σ < 100%
 Tours optimised with constant costs are nearly always infeasible

When l = 6, decreasing σ decreases feasibility...
...But when l ≥ 12, decreasing σ increases feasibility

This may be explained by shortest path durations

40/85

What about the TD-DARP-TW?

Percentage of feasible tours:
(n = 60, q = 6, and TW length = 60)

Shortest paths durations:
(% wrt durations when l = 6 and σ = 100)

Feasibility is decreased when increasing l , even when σ < 100%
 Tours optimised with constant costs are nearly always infeasible

When l = 6, decreasing σ decreases feasibility...
...But when l ≥ 12, decreasing σ increases feasibility

This may be explained by shortest path durations

40/85

Conclusion: Two main challenges for TD routing problems

Scalability:

TD problems are much more difficult than constant ones
 Some instances with 40 points to visit are not solved within 1h

Reliability:

Getting reliable TD cost functions is not an easy task!

The number of sensors has a strong impact on reliability
 What about their position?

Interpolation is not a good predictor for missing values
 Can we find better predictors?

So far, we have assumed that we have perfect predictive models
 Is it really the case?

41/85

Conclusion: Is it worth exploiting time-dependent data?

It depends on the goal!

If the goal is to reduce tour durations:
 Not really if we don’t have perfect TD Data

If the goal is to better satisfy time window constraints:
 Yes, even when only 10% of the road segments have sensors

What about carbon footprint?

What is the cost of getting reliable TD Data?

Can TD problems ease shared and multi-modal mobility?
 Work with social scientists on this question!?

42/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

43/85

Motivations

Optimisation with Data coming from predictive models:

A prediction may be wrong
What should we do in this case?

Some predictions are more reliable
than others

Can we anticipate with respect to
likely events?

Context of this work:
PhD thesis of Michael Saint Guillain defended in 2019 (co-tutelle with
Louvain-la-neuve, Belgium, co-supervised with Yves Deville)

44/85

Classical optimisation problems

Problems are defined by means of:

Input Data
Decision variables (X) and their domains (D)
Constraints to be satisfied (C)
Objective function to optimise (F)

Solution:
Assign values to variables so that all constraints are satisfied and the
objective function is optimal

What can we do when observed Data 6= input Data?

Recompute a new solution wrt new Data
Drawbacks:

Re-computation is time consuming
The new solution may be much worse than the one computed by
anticipating wrt likely events

45/85

Stochastic Optimisation Problems

Stochastic problems are defined by means of:

Input Data known with certainty
Uncertain input Data = Random variables
Decision variables (X) and their domains (D)
Constraints to be satisfied (C)
Objective function to optimise (F)

Example: VRP with stochastic demands

Certain data: points to deliver, distances, vehicle
capacity
Uncertain data: demands
Probability distributions of demands:

p(rA = 2) = p(rB = 2) = p(rD = 1) = 1
p(rC = 1) = 1

3 , p(rC = 8) = 1
3 ,p(rC = 9) = 1

3

k=11

3

2
1

4

1

3
4

d

C:

5

1, 8
ou 9

3
D:1

B:2

4

A:2

46/85

Robust solutions for stochastic optimisation problems

Ensure the feasibility of the solution wrt some given probability p:

Goal = Assign values to variables so that the objective function is optimal and
the probability that constraints are satisfied is greater than p

Example: Robust solutions for the VRP with stochastic demands

Robust solution wrt p = 1 :

Cout=16

4

d

4

2

C:1|8|9

3

1

D:1

A:2

3

4

1
B:2

3

5

Robust solution wrt p = 2
3 :

4

4

d

1
C:1|8|9

2

3
3

4

B:2

A:2 3

5

D:1

1

Cout=14

Stochastic Constraint Programming [Walsh 2009, Piette 2016]

Used for General Game Playing: WoodStock winner of IGGPC 2016
47/85

https://arxiv.org/pdf/0903.1152.pdf
https://www.cril.univ-artois.fr/en/phds/e-piette/

Flexible solutions for stochastic optimisation problems

Optimise the expected cost of adapted solutions:

Define an adaptation procedure to be applied when random variables
are realised = Simple (and fast) procedure
Before the beginning of random variable realisations (offline) :
Compute an a priori solution = Assign values that optimise the
expectation of the objective function wrt the adaptation procedure
Each time a random variable is realised (online) :
 Apply the adaptation procedure

Ex.: Adaptation procedure for the VRP with stochastic demands

Go back to the depot if current load + next demand > k

A priori Solution for k = 11 :

A:2

4

d

3

1

1
2

3

4

5

3

D:1

C:1|8|9B:2

4

Cout=12

Adapted solution if rC = 8 or 9 :
C:8|9

4

d

1

3

4

1

3

2

5

3

D:1

B:2

4

Cout=16

A:2

48/85

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:
p(rA = 2) = p(rB = 2) = p(rD = 1) = 1
p(rC = 1) = 1

3 , p(rC = 8) = 1
3 ,p(rC = 9) = 1

3
k=11

3

2
1

4

1

3
4

d

C:

5

1, 8
ou 9

3
D:1

B:2

4

A:2

What if we consider the “average” problem (i.e. rC =6)?

Optimal solution:

A:2

4

d

2

3

1

3

1

4

5

3
D:1

C:6B:2

4

Cout=10

Adaptation if rC =1

A:2

4

d

2

3

1

3

1

4

5

3
D:1

B:2 C:1

4

Cout=10

Adapt. if rC ∈{8,9}
C:8|9

4

d

2

3

1

3

4

1

5

3
D:1

B:2

4

Cout=18

A:2

 Expected cost = 10+18+18
3 = 46

3 . Can we do better?
49/85

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:
p(rA = 2) = p(rB = 2) = p(rD = 1) = 1
p(rC = 1) = 1

3 , p(rC = 8) = 1
3 ,p(rC = 9) = 1

3
k=11

3

2
1

4

1

3
4

d

C:

5

1, 8
ou 9

3
D:1

B:2

4

A:2

Optimisation of the expected cost of adapted solutions:

A priori Solution:

A:2

4

d

3

1

1
2

3

4

5

3

D:1

C:1|8|9B:2

4

Cout=12

Adaptation if rC =1

A:2

4

d

3

1

1
2

3

4

5

3

C:1

D:1

B:2

4

Cout=12

Adapt. if rC ∈{8,9}
C:8|9

4

d

1

3

4

1

3

2

5

3

D:1

B:2

4

Cout=16

A:2

 Expected cost = 12+16+16
3 = 44

3 . That’s better!
49/85

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:
p(rA = 2) = p(rB = 2) = p(rD = 1) = 1
p(rC = 1) = 1

3 , p(rC = 8) = 1
3 ,p(rC = 9) = 1

3
k=11

3

2
1

4

1

3
4

d

C:

5

1, 8
ou 9

3
D:1

B:2

4

A:2

What if we have an oracle that knows the future?
Optimal sol. if rC = 1

A:2

4

d

2

3

1

3

1

4

5

3
D:1

B:2 C:1

4

Cout=10

Optimal sol. if rC = 8
C:8

4

d

1

2

3
3

4

B:2

A:2 3

5

D:1

1

Cout=14

4

Optimal sol. if rC = 9
C:9

4

d

1

3

4

1

3

2

5

3

D:1

B:2

4

Cout=16

A:2

 Expected cost = 10+14+16
3 = 40

3 . That’s even better, but oracles don’t exist!
49/85

How to compute the expected cost of an a priori solution
 Use Dynamic Programming

Example: Stochastic TSP

Uncertain Data = Vertices to visit (some clients may be missing)
Stochastic knowledge: Each vertex i is present with probability p(i) and
missing with probability 1− p(i)
A priori solution: Hamiltonian cycle (v0, v1, . . . , vn, v0)

Adaptation: Skip vertices associated with missing clients

Bellman equations to compute the expected cost:

Let e(vi) = expected length of the adaptation of (vi , vi+1, . . . , vn, v0)

If i = n, then e(vi) = dvi ,v0

Otherwise, e(vi) =
∑n

j=i+1 Pr(vi , vj) ∗ (dvi ,vj + e(vj))

Pr(vi , vj) = proba that vj is present and vi+1, . . . , vj−1 are missing
 Pr(vi , vj) = (1− p(vi+1)) ∗ . . . ∗ (1− p(vj−1)) ∗ p(vj)

Expectation of an a priori solution = e(v0) computed in O(n2)

Problem: Not always possible to find Bellman’s equations... 50/85

How to compute the expected cost of an a priori solution
 Use Monte Carlo sampling

Expected cost of an a priori solution A =
∑

s∈S Pr(s) · costA(s)

S is the set of all possible scenarios
costA(s) = cost of A adapted to s

Example: Expectation of the length of a tour for the Stochastic TSP

Scenario = subset of vertices (corresponding to present clients)
For each subset s ⊆ V :

Probability of s = Πi∈Sp(i) ∗ Πi∈V\S(1− p(i))
costA(s) = length of the subcycle of A that only contains nodes of s

Problem: The number of scenarios is exponential

Approximation with Monte-Carlo Sampling:

Generate a representative subset of scenarios using probabilities
For each sampled scenario, compute the cost of the adapted solution
Return the average cost

51/85

Computation of an a priori solution with optimal expected cost

Exact approach: Branch & Cut (Integer L-shaped method)

Drop some constraints (integrality, subtour elimination, etc)
Replace the non-linear obj. function by a lower bounding variable z
Iterate:

Solve the current problem
Add feasibility cuts if dropped constraints are violated
Add optimality cuts if z < actual expected cost

Meta-Heuristic approaches (most often, local search-based):

Generate an initial a priori solution
While termination conditions not reached:

Change the values of some decision var. wrt some heuristics
(6= possible heuristics: greedy, simulated annealing, tabu, etc)
Evaluate the impact on the expected cost
Accept or not the changes wrt some meta-heuristics

Return the best a priori solution

52/85

Application to Police Patrol Management in Brussel

Description of the problem:

Requests are revealed during the day, and must all be accepted
Goal: Minimise service time expectation

Historical Data from 2013 to 2017:
 Evolution of request localisation wrt time

Reference:
Saint-Guillain, Paquay, Limbourg: Time-dependent stochastic vehicle routing problem with
random requests: Application to online police patrol management in Brussels

53/85

https://www.sciencedirect.com/science/article/abs/pii/S037722172030953X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S037722172030953X?via%3Dihub

Introduction of waiting vertices and waiting times

Example of a priori solution: Example of adapted solution:

New algorithms:

Dyn. prog. to compute exp. cost in O(n2h3q) time and O(nh2q) space
(n = nb of vertices, h = nb of time steps, q = max. capacity)

Local Search approach to compute an approximate a priori solution

54/85

Choice of locations by spatial clustering

Waiting locations (∈ {150,100,50}):

55/85

Results

Average relative gain wrt Wait & Serve strategy:

Nb of waiting locations
50 100 150 Wait & Serve

3 vehicles 18.6% 17.0% 19.1% 11.6 mn
4 vehicles 25.4% 26.2% 28.1% 10.3 mn
6 vehicles 38.6% 39.3% 38.1% 10.0 mn

Conclusions:

Exploiting stochastic knowledge allows to reduce service time

Gain increases when increasing the number of vehicles

Gain doesn’t increase with the number of waiting locations
 Increasing the nb of waiting locations increases the search space size

56/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

57/85

Conclusion

How to exploit huge amounts of sensed Data?

Descriptive analytics to understand
Diagnostic analytics to explain
Predictive analytics to forecast
Prescriptive analytics to optimise

Time-Dependent optimisation for temporal Data
Stochastic optimisation for uncertain Data

Where are the challenges?

NP-hard problems for which complete approaches hardly scale
Need accurate, reliable, and available Data
 Privacy and sustainability issues
Citizens must be ready to use these smart services
... or smart services should adapt themselves to citizens!

Hot multidisciplinary research field!

58/85

Prescriptive Data Analytics

1 Context: Prescriptive Analytics for Urban Deliveries

2 What kind of Data can we exploit?

3 Optimisation with Time-Dependent Data

4 Optimisation with uncertain data

5 Conclusion

6 Parenthesis on Constrained Optimization

59/85

Constrained Optimization

Model of a Constrained Optimization Problem (COP):

 Define (X ,D,C,F) with:

X = Set of variables (unknowns)

D = function which defines the domain D(xi) of every variable xi ∈ X
 D(xi) = Set of values that may be assigned to xi

C = Constraints (relations between variables of X)

F : X → R = objective function to optimize

Solution of a problem (X ,D,C,F):

Assignment of a value to every variable of X such that:
Each variable xi ∈ X is assigned to a value that belongs to D(xi)

Every constraint of C is satisfied
F is maximized (or minimized)

Remark: A problem may have several different models...

60/85

Example: Model for the TSP

Variables: X = {xi,j | i , j ∈ V × V , i 6= j} with D(xi,j) = {0,1}
 xi,j = 1 if we travel to j just after i

Constraints:
∀i ∈ V , we must visit i once:

∀i ∈ V ,
∑
j∈V

xi,j =
∑
j∈V

xj,i = 1

∀S ⊂ V , no subtour:

∀S ⊂ V ,
∑

(i,j)∈S×S

xi,j < |S|

Objective function: Minimize
∑

(i,j)∈S×S di,j ∗ xi,j

Example for the tour 0→ 3→ 1→ 2→ 4→ 0

x0,3 = x3,1 = x1,2 = x2,4 = x4,0 = 1

61/85

Example: Other model for the TSP

Variables: X = {nexti , visiti | i ∈ V}
D(nexti) = V \ {i}
 nexti = j if the vertex visited after i is j
D(visiti) = V
 visiti = j if the i th visited vertex is j

Constraints:
We start from and return back to 0: visit0 = 0 and nextvisitn−1 = 0
The next of visiti−1 is visiti : ∀i ∈ V \ {0}, visiti = nextvisiti−1

Each vertex is visited once: allDifferent(visit)
Each vertex follows a different vertex: allDifferent(next)

Objective function: Minimize
∑

i∈V di,nexti

Example for the tour 0→ 3→ 1→ 2→ 4→ 0

next 3 2 4 1 0
0 1 2 3 4

visit 0 3 1 2 4
0 1 2 3 4 62/85

Some particular cases

No constraint:
 Optimization problem

No objective function:
 Constraint Satisfaction Problem (CSP)

Domains are discrete (enumerable)
 Combinatorial problem

F linear, D = R and C = linear inequalities
 Linear Programming (LP)

F linear, D = Z and C = linear inequalities
 Integer Linear Programming (ILP)

F linear, D = {0,1} and C = linear inequalities
 Knapsack problem

F quadratic, D = R and C = linear inequalities
 Quadratic Problem

...

63/85

Complexity

Some particular cases have polynomial complexities:

Linear programming with continuous domains
2-SAT
Assignment problems
Shortest path problems
...

They are most often NP-hard:

ILP, Knapsack
SAT, 3-SAT, Planar-3-SAT, ...
Many graph problems:
Coloring, TSP, max Clique, ...
CSP with finite domains
...

In some cases they are undecidable:

Diophantine equations
CSP with non finite domains
...

64/85

How to solve NP-hard problems?

Some instances of NP-hard problems may be easy to solve
 far from phase transition, landscapes with few local optima, ...

Some NP-hard problems become polynomial when adding constraints

Some NP-hard problems may be approximated in polynomial time
(with bounds on errors)

Otherwise, we have to be intelligent when exploring the search space

Heuristic approaches:
 Avoid explosion by ignoring some parts of the search space
Complete approaches:
 Prevent explosion by structuring and filtering search space

65/85

Heuristic approaches
Exploration guided by (meta-)heuristics

Intensify search around the most promising areas
Diversify search to discover new areas

Two kinds of heuristic approaches
Perturbative: Modify existing combinations

Ex: Local search (LS), Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), ...

Constructive: Build new combinations from scratch
Ex: Ant Colony Optimization (ACO), Estimation of Distribution
Algorithms (EDA), ...

Example of local search for the 8-queen problem:

66/85

Complete approaches

Ad hoc approaches

Branch & Bound, Branch & Cut, Branch & Price, ...
Dynamic programming
...

Generic approaches: Problem Model Generic solver

MILP (Mixed Integer Linear Programming)
 Numerical variables; Constraints = Linear inequalities
SAT (satisfiability of Boolean formulae)
 Boolean variables; Constraints = Logical clauses
CP (Constraint Programming)
 Any kind of variables and constraints

Why using CP?

Ease of modelling
Efficiency

67/85

Why using CP instead of SAT?

Slide from Christian Bessière

68/85

Why using CP instead of SAT?

Slide from Christian Bessière

69/85

Why using CP instead of ILP?

Slide from Christian Bessière

70/85

Why using CP instead of ILP?

Slide from Christian Bessière

71/85

Why using CP instead of a dedicated approach?
 Differential cryptanalysis of AES

Basic model in Picat:

Advanced model in Picat:
Less than 200 lines of code
Solve all instances in less than 4h (for keys of 128, 192, and 256 bits)

Branch & Bound [Biryukov et al 2010] :
 Several days (weeks) for keys of 128 (192) bits
Graph traversal [Fouque et al 2013] :
 30mn/12 cores for 128 bits, but 60GB of RAM

72/85

CP Langages and Libraries

ALICE [Jean-Louis Laurière, 1976]
 First CP approach

CHIP, Prolog V, Gnu-Prolog, Picat
 Extensions of Prolog

CHOCO (Java), Gecode (C++), OR-Tools (C++)
 Open source libraries

OPL Development Studio (IBM)
 Modelling language + CP + MIP

...

73/85

Example: Choco code for the TSP

74/85

Example: OPL model for the ATSP

Input Data:
1 range Points = 1..nbPoints;
2 int duree[Points][Points] =...

Variables :
1 dvar int visit[Points] in Points; /* visit[i] = ième point visité */
2 dvar int h[Points] in T; /* h[i] = heure d’arrivée sur i */

Objective function to optimize and constraints:
1 minimize h[vfinal];
2 subject to {
3 visit[1] == vinit ; /* On part de vinit */
4 h[vinit] == t0; /* à l’heure t0 */
5 visit[nbPoints] == vfinal ; /* et on termine sur vfinal */
6 allDifferent(visit); /* Chaque point est visité une fois */
7 forall(i ∈ 1..nbPoints − 1){
8 h[visit[i+1]] == h[visit[i]] + duree[visit[i]][visit[i+1]]
9 }

10 }

75/85

Generic Solving Algorithm

1 Function solve(X ,D,C)
Input : A CSP (X ,D,C)
Precondition : (X ,D,C) is locally consistent
Postcondition : Return a solution of (X ,D,C) or ∅ if no solution

2 if for each variable xi ∈ X , |D(xi)| = 1 then return D;
3 Choose a variable xi ∈ X such that |D(xi)| > 1
4 for each value v ∈ D(xi) do
5 Save D and reduce D(xi) to {v}
6 if (X ,D,C) is locally consistent then
7 Sol ← solve(X ,D,C)
8 if Sol 6= ∅ then return Sol ;

9 Restore D

10 return ∅

Local consistency of a CSP (X ,D,C)

Check that each constraint can be satisfied
Different levels of consistency may be considered
Simplest consistency: check constraints whose variables have singleton
domains

76/85

Generic Solving Algorithm

1 Function solve(X ,D,C)
Input : A CSP (X ,D,C)
Precondition : (X ,D,C) is locally consistent
Postcondition : Return a solution of (X ,D,C) or ∅ if no solution

2 if for each variable xi ∈ X , |D(xi)| = 1 then return D;
3 Choose a variable xi ∈ X such that |D(xi)| > 1
4 for each value v ∈ D(xi) do
5 Save D and reduce D(xi) to {v}
6 if (X ,D,C) is locally consistent then
7 Sol ← solve(X ,D,C)
8 if Sol 6= ∅ then return Sol ;

9 Restore D

10 return ∅

Local consistency of a CSP (X ,D,C)

Check that each constraint can be satisfied
Different levels of consistency may be considered
Simplest consistency: check constraints whose variables have singleton
domains

76/85

Exercise

Map coloring: CSP:

X = {F ,E ,S, I}

D(F) = {b, v},
D(E) = {b, j , r , v},
D(S) = D(I) = {b, r}

C = {F 6= E ,
F 6= S,
F 6= I,
S 6= I}

Build the search tree (tree of the recursive calls to solve)
 Choose variables according to the order: F ,E ,S, I

77/85

Improvements of solve: Constraint propagation

Why propagating constraints?

Avoid encoutering several times a same inconsistency
 Filter domains to ensure some given consistency
 No recursive call if a domain is empty

Different consistency levels may be considered: Arc Consistency (AC),
k-consistency, Singleton AC, etc
 Different strengthes and different complexities

Most popular consistency: AC

Let c be a constraint defined over a set Xc of k variables. c is AC if:
∀xi ∈ Xc ,∀vi ∈ D(xi),∀xj ∈ Xc \ {xi},∃vj ∈ D(xj) such that c is satisfied
by the assignment x1 = v1, ..., xk = vk

Different algorithms for ensuring AC

AC3 (binary constraints): O(ed3) in time; O(e) in space
AC2001 (binary constraints): O(ed2) in time; O(ed) in space
STR: O(t) in time and space (t = number of allowed tuples)

78/85

Exercise

CSP associated with map coloring (recall):

X = {F ,E ,S, I}

D(F) = {b, v}, D(E) = {v}, D(S) = D(I) = {b, r}

C = {F 6= E ,F 6= S,F 6= I,S 6= I}

Filter domains to ensure AC

79/85

Improvements of solve: Learning from failures

What can we do when a domain becomes empty?

backtrack: Go back to the last call

backjump: Go back to the call that assigned the last variable involved in
the failure

Learn nogoods: Add the failure cause to constraints

Example

X = {x1, x2, x3, x4, x5}

D(x1) = {5,6}, D(x2) = {2,3}, D(x3) = {3,4}, D(x4) = D(x5) = {4,5}

All variables must be assigned to different values

80/85

Improvements of solve: Ordering heuristics

1 Function solve(X ,D,C)
2 if for each variable xi ∈ X , |D(xi)| = 1 then return D;
3 Choose a variable xi ∈ X such that |D(xi)| > 1
4 for each value v ∈ D(xi) do
5 Save D and reduce D(xi) to {v}
6 if (X ,D,C) locally consistent then
7 Sol ← solve(X ,D,C)
8 if Sol 6= ∅ then return Sol ;

9 Restore D

10 return ∅

Variable ordering heuristics

deg: Variable involved in the largest number of constraints
 Reduce tree depth
dom: Variable with the smallest domain
 Reduces tree width
dom
deg : Compromise between dom and deg
dom
wdeg : Each constraint has a weight (incremented on failures)
 divide |D(xi)| by sum of weights of constraints associated with xi

Value ordering heuristics

Choose values that are more likely to belong to solutions
 No universal heuristic

May be learned... but this may be expensive

Useless for proving inconsistency of infeasible instances

95% of the solving time is spent on inconsistent sub-trees

81/85

Improvements of solve: Ordering heuristics

1 Function solve(X ,D,C)
2 if for each variable xi ∈ X , |D(xi)| = 1 then return D;
3 Choose a variable xi ∈ X such that |D(xi)| > 1
4 for each value v ∈ D(xi) do
5 Save D and reduce D(xi) to {v}
6 if (X ,D,C) locally consistent then
7 Sol ← solve(X ,D,C)
8 if Sol 6= ∅ then return Sol ;

9 Restore D

10 return ∅

Value ordering heuristics

Choose values that are more likely to belong to solutions
 No universal heuristic

May be learned... but this may be expensive

Useless for proving inconsistency of infeasible instances

95% of the solving time is spent on inconsistent sub-trees

81/85

Global constraints

What is a global constraint?

Constraint defined over a set of constraints (the cardinality of which is not
fixed)

Examples of global constraints:

allDifferent(x1, . . . , xn)

sum(x1, . . . , xn, s)

atLeast(x1, . . . , xn, k , v)

Why global constraints?

Ease modelling

Improve propagation:
 filter more values and/or reduce time complexity

82/85

Decomposition of global constraints

How to decompose a global constraint?

Replace the constraint with an equivalent set of non global constraints

Example 1: allDifferent(x1, . . . , xn)

∀i , j ∈ [1,n], i 6= j : xi 6= xj

Example 2: atLeast(x1, . . . , xn, k , v)

Introduction of n new variables s1, . . . , sn such that D(xi) = [0, i]
s1 = (x1 == v)
∀i ∈ [2,n] : si = si−1 + (xi == v)
sn ≥ k

Example 3: sum(x1, . . . , xn, s)

Introduction of n new variables s1, . . . , sn
s1 = x1
∀i ∈ [2,n] : si = si−1 + xi
s = sn

83/85

Propagation of global constraints

AC-decomposable constraint
There exists a polynomial size decomposition such that the decomposition is
AC iff the global constraint is AC

Example: atLeast(x1, . . . , xn, k , v) is AC-decomposable

Propagating the constraints si = si−1 + (xi == v) filters the same values as
propagating atLeast(x1, . . . , xn, k , v), but more efficiently

Example: sum(x1, . . . , xn, s) is not AC-decomposable

Proof: deciding if an instance of sum is AC is an NP-hard problem

What about allDifferent?
The binary decomposition filters less values
Deciding if an instance of allDifferent is AC is in P
Can we find a decomposition that preserves AC?
 No!

84/85

Dedicated filtering algorithms

What can we do when a constraint is neither NP-hard nor
AC-decomposable?

 Implement a propagation algorithm that ensures AC in polynomial time!

Propagation of allDifferent

 Matching algorithm of Hopcroft and Karp (1973)

Figure from Christian Bessière

allDifferent(x1, x2, x3, x4)

D(x1) = {1,2,4}

D(x2) = {2,3}

D(x3) = {2,3}

D(x4) = {3,4,5}

85/85

Dedicated filtering algorithms

What can we do when a constraint is neither NP-hard nor
AC-decomposable?

 Implement a propagation algorithm that ensures AC in polynomial time!

Propagation of allDifferent

 Matching algorithm of Hopcroft and Karp (1973)

Figure from Christian Bessière

allDifferent(x1, x2, x3, x4)

D(x1) = {1,2,4}
 remove 2 from D(x1)

D(x2) = {2,3}

D(x3) = {2,3}

D(x4) = {3,4,5}
 remove 3 from D(x4)

85/85

	Context: Prescriptive Analytics for Urban Deliveries
	What kind of Data can we exploit?
	Optimisation with Time-Dependent Data
	Optimisation with uncertain data
	Conclusion
	Parenthesis on Constrained Optimization

