Prescriptive Data Analytics

Christine Solnon

5IF - 2022-2023

Prescriptive Data Analytics

Context: Prescriptive Analytics for Urban Deliveries

- 2) What kind of Data can we exploit?
- Optimisation with Time-Dependent Data
- Optimisation with uncertain data
- 5 Conclusion
- Parenthesis on Constrained Optimization

Descriptive Analytics :

Extract Knowledge from Data

What are the traffic conditions right now?

Diagnostic Analytics :

Explain why some events occur (XAI) Why is there a traffic jam right now?

Predictive Analytics :

Build models to predict future What will be traffic conditions in 30 mn?

Prescriptive Analytics :

Descriptive Analytics :

Extract Knowledge from Data What are the traffic conditions right now?

Diagnostic Analytics :

Explain why some events occur (XAI) Why is there a traffic jam right now?

Predictive Analytics :

Build models to predict future What will be traffic conditions in 30 mn?

Prescriptive Analytics :

Descriptive Analytics :

Extract Knowledge from Data What are the traffic conditions right now?

Diagnostic Analytics :

Explain why some events occur (XAI) Why is there a traffic jam right now?

Predictive Analytics :

Build models to predict future What will be traffic conditions in 30 mn?

Prescriptive Analytics :

Descriptive Analytics :

Extract Knowledge from Data What are the traffic conditions right now?

Diagnostic Analytics :

Explain why some events occur (XAI) Why is there a traffic jam right now?

Predictive Analytics :

Build models to predict future What will be traffic conditions in 30 mn?

Prescriptive Analytics :

Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

- Compute the shortest path graph
- Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph to

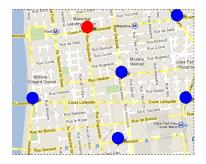
Problem:

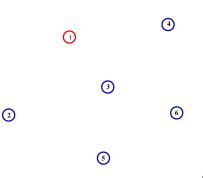
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

• Compute the shortest path graph

Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph



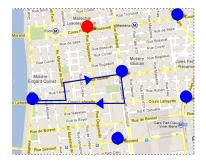


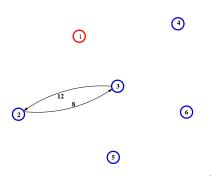
Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

- Compute the shortest path graph
- Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph





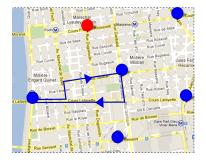
Problem:

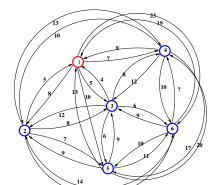
Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

Compute the shortest path graph

• Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph



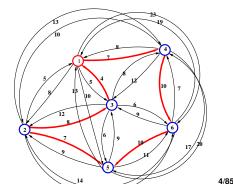


Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

- Compute the shortest path graph
- Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph



Some Classical Variants

Vehicle Routing Problem (VRP)

- Deliveries are associated with demands
- There are several vehicles with limited capacities

Pickup and Delivery Problem (PDP)

Each request is composed of a pickup point and a delivery point ~ A delivery point cannot be visited before its corresponding pickup point

Dial A Ride Problem (DARP)

PDP with a limited capacity vehicle

Addition of Time Windows (TSP-TW, VRP-TW, PDP-TW, DARP-TW)

Each point *i* must be visited within a time-window

Various objective functions:

Travel duration, Arrival time, Number of vehicles, ...

What's difficult in classical problems?

Compute shortest paths between two points?

Easy and well solved problem:

Efficient algorithms (polynomial time)
 ~> For example, Dijkstra or A*

Compute optimal tours in the shortest path graph?

 \mathcal{NP} -hard problems

- Theory: No algorithm can compute the optimal solution in polynomial time (unless P = NP)
- Practice: Use Artificial Intelligence!

What's difficult in classical problems?

Compute shortest paths between two points?

Easy and well solved problem:

● Efficient algorithms (polynomial time)
 → For example, Dijkstra or A*

Compute optimal tours in the shortest path graph?

 $\mathcal{NP}\text{-hard problems}$

- Theory: No algorithm can compute the optimal solution in polynomial time (unless $\mathcal{P} = \mathcal{NP}$)
- Practice: Use Artificial Intelligence!

New Data for New Problems

Classical problems:

- All Data are known when optimising tours ~> Deterministic Problems
- Travel durations are constant ~> Constant Problems

Ex: Average travel duration on section 18 = 42, ...

New Data ~-> New Problems:

- Probability distributions → Stochastic Problems
 Ex: Probability(travel duration on section 18 = 42) = 0.4, ...
- Real-time Data revealed when realising tours ~>> Online Problems Ex: Actual travel duration on section 18 = 58
- Data which depends on time → Time-Dependent Problems
 Ex: Travel duration at 8:00 = 42; Travel duration at 8:15 = 47; ...

Prescriptive Data Analytics

What kind of Data can we exploit?

- Optimisation with Time-Dependent Data
- Optimisation with uncertain data
- 5 Conclusion
- Parenthesis on Constrained Optimization

Context of this work

ASTRAL project [2014-2017]:

- Funded by IMU LabEx
- Partners: LICIT (IFSTTAR), LIRIS, and Métropole de Lyon
- Goal: Design predictive models for traffic forecasting in city centres

PhD thesis of Julien Salotti (defended in 2019):

- Co-supervised with R. Billot, N.-E. El Faouzzi, and S. Fenet
- Contributions:
 - Experimental evaluation of predictive models
 - Integration of causal information in predictive models

How to measure traffic conditions?

Spatio-temporal trajectories coming from the use of applications:

- Examples: GPS, Mobile phone communications with cellular networks
- Cons: Privacy issues, Spatial errors, Representativity issues, Property issues, ...

(Image from Romain Billot)

Electro-magnetic sensors:

- Physical detection of vehicles
- Cons: Incomplete spatial coverage

Data coming from electro-magnetic sensors

Dataset provided by Lyon Metropole:

- 634 sensors
- Two measures every 6 minutes:
 - Flow: Nb of vehicles per time period
 - Density: Nb of vehicles per road segment

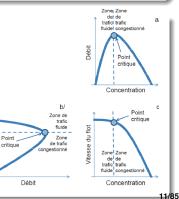
Fundamental diagram:

Estimate speed given flow and density:

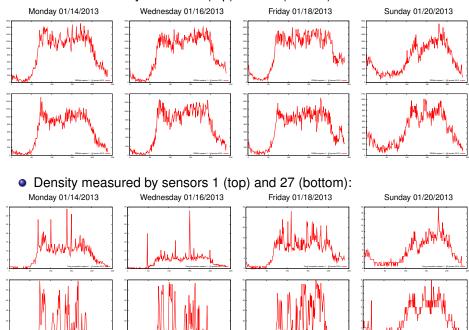
- Fluid traffic: flow increases when density increases
- Congested traffic: flow decreases when density increases

Reference:

Buisson and Lesort (2010): *Comprendre le trafic routier : Méthodes et calculs*



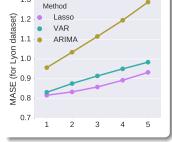
• Flow measured by sensors 1 (top) and 27 (bottom):



Compared approaches:

- Univariate (U) vs Multivariate (M)
- Variable selection (S)
- Linear (L) vs Non Linear (NL)

Method	L	NL	U	М	S
ARIMA	Х		Х		
VAR	х			х	
LASSO	х				х



Reference:

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): *Comparison of traffic forecasting methods in urban and suburban context*

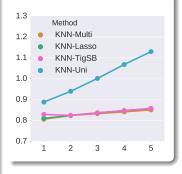
13/85

Compared approaches:

- Univariate (U) vs Multivariate (M)
- Variable selection (S)
- Linear (L) vs Non Linear (NL)

Method	L	NL	U	М	S
ARIMA	Х		Х		
VAR	х			х	
LASSO	х				х
<i>k</i> NN-uni		Х	Х		
<i>k</i> NN-multi		х		х	
kNN-Lasso		х			х
kNN-TigSB		Х			х

Mean Absolute Scaled Error (MASE) :



Reference:

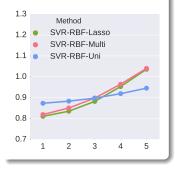
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): *Comparison of traffic forecasting methods in urban and suburban context*

13/85

Compared approaches:

- Univariate (U) vs Multivariate (M)
- Variable selection (S)
- Linear (L) vs Non Linear (NL)

Method	L	NL	U	М	S
ARIMA	х		Х		
VAR	х			х	
LASSO	х				х
<i>k</i> NN-uni		Х	Х		
<i>k</i> NN-multi		х		х	
kNN-Lasso		х			х
<i>k</i> NN-TigSB		х			х
SVR-RBF-uni		Х	Х		
SVR-RBF-multi		х		х	
SVR-RBF-Lasso		х			х



Reference:

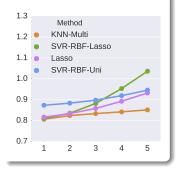
Salotti, Fenet, Billot, El Faouzi, Solnon (2018): *Comparison of traffic forecasting methods in urban and suburban context*

Compared approaches:

- Univariate (U) vs Multivariate (M)
- Variable selection (S)
- Linear (L) vs Non Linear (NL)

v				S
Х		Х		
х			х	
х				х
	Х	Х		
	х		х	
	Х			Х
	х			х
	Х	Х		
	Х		х	
	х			х
	х	x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x x

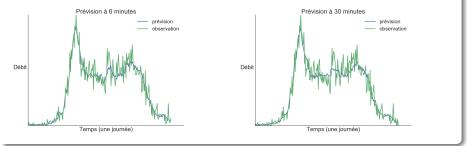
Mean Absolute Scaled Error (MASE) :



Reference:

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): *Comparison of traffic forecasting methods in urban and suburban context*

Examples of forecasting (with *k*NN-multi):



Predictive models: long term predictions

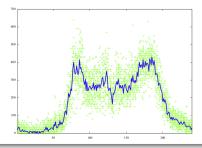
Clustering of days for each sensor:

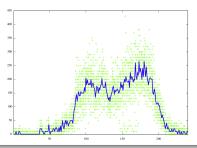
- Group days with similar time series
- May be done by exploiting knowledge or automatically

Build a representative time series for each cluster:

For each time step, search for a representative value \rightsquigarrow For example, the median

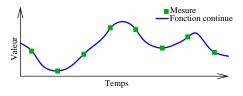
Example: Median flow (blue) over 20 days (green) for two sensors



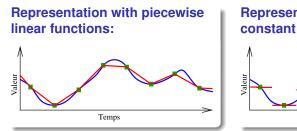


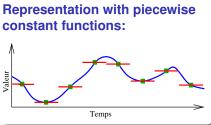
Representation of predictive models for temporal series

Temporal serie = one measure per time step (e.g., 6 minutes):



→ Models = one prevision per time step





How to exploit these predictions to optimise delivery tours?

When preparing the tour (the day before):

- Minimize tour durations by exploiting speed predictions
- Take into account the fact that speed is not constant through the day
- ~ Optimisation with Time-Dependent (TD) Data

While performing the delivery tour:

- Adapt the tour when observed events are different from predicted ones (unexpected events)
- Anticipate on likely events by exploiting statistics on past events

~ Optimisation with Uncertain Data

Prescriptive Data Analytics

- **Context: Prescriptive Analytics for Urban Deliveries**
- 2) What kind of Data can we exploit?

Optimisation with Time-Dependent Data

- Optimisation with uncertain data
- 5 Conclusion
- Parenthesis on Constrained Optimization

Context of this work

PhD thesis of Penélope Aguiar Melgarejo (defended in 2016):

- Funded by IBM and co-supervised with Philippe Laborie (IBM)
- Algorithms for optimizing with Time-Dependent Data
 - Computation of the duration of a path
 - Computation of shortest paths
 - Solve the TD-ATSP with Constraint Programming (CP)

Post-doc of Omar Rifki (2018/2019):

- Funded by IMU and co-supervised with Nicolas Chiabaut (LICIT)

PhD thesis of romain Fontaine (started in 2020):

- Funded by "enjeu transport" and co-supervised with Jilles S. Dibangoye
- Algorithms for solving Time-Dependent VRPs

Adv.: New PhD starting in 2023 ---> Tell me if you are interested!

Definition of the problem

Input Data:

- A set S of delivery points and a warehouse v₀
- A start time t₀
- For each road segment (i, j) and each time t:
 d(i, j, t) = travel time from i to j when leaving i at time t

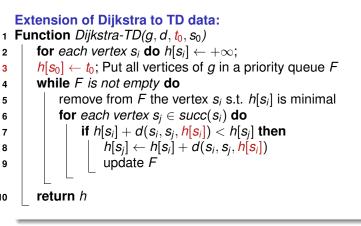
Output:

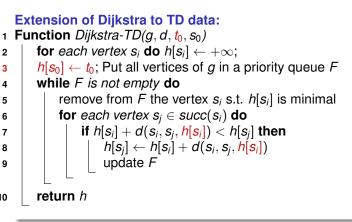
A sequence of road segments that:

- Starts from v₀, visits each point of S, and returns to v₀
- Minimises the arrival time when leaving v₀ at t₀

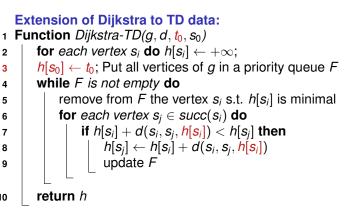
Solution process in two steps:

- Compute quickest paths for each possible start time ~ TD cost function for each couple of delivery points
 - 2 Solve the TD-ATSP





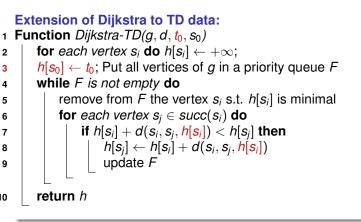
Condition for Dijkstra to be correct?



Condition for Dijkstra to be correct?

• Every subpath of an optimal path must be optimal

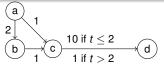
Is the condition satisfied when costs are time-dependent?



Condition for Dijkstra to be correct?

• Every subpath of an optimal path must be optimal

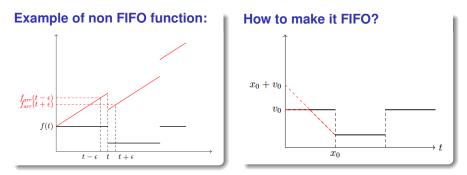
Is the condition satisfied when costs are time-dependent?



When leaving *a* at 0: cost of $\langle a, b, c, d \rangle = 4$ cost of $\langle a, c, d \rangle = 11$

To ensure the correctness of Dijkstra, d must satisfy the FIFO property:

- If t₁ < t₂ then t₁ + d(i, j, t₁) ≤ t₂ + d(i, j, t₂)
 → We cannot arrive sooner if we leave later
- If d is not FIFO, then searching for shortest paths is \mathcal{NP} -hard



References:

- Kaufman, Smith (1993): Fastest paths in time-dependent networks for intelligent vehicle-highway systems
- Ichoua, Gendreau, Potvin (2003): Vehicle dispatching with time-dependent travel times

Non Exhaustive Literature Review on the TD-TSP

Problem		Const	Constraints		Solving approach	
TSP	VRP	TW	Q	Exact	Heuristic	
\checkmark	\checkmark	\checkmark	\checkmark	ILP		
\checkmark				DP	RDP	
\checkmark					LS	
	\checkmark	\checkmark			LS	
	\checkmark	\checkmark			Greedy	
	\checkmark	\checkmark	\checkmark		GA	
	\checkmark	\checkmark	\checkmark		LS	
	\checkmark		\checkmark		LS	
	\checkmark	\checkmark	\checkmark		ACO	
\checkmark	\checkmark				Greedy	
\checkmark					ACO	
	\checkmark	\checkmark	\checkmark		Greedy	
\checkmark				ILP		
\checkmark				CP		
\checkmark		\checkmark		ILP		
\checkmark		\checkmark		ILP		
\checkmark		\checkmark		ILP		
	\checkmark	\checkmark	\checkmark		LS	
\checkmark		\checkmark		ILP		
\checkmark	\checkmark	\checkmark	\checkmark	DP		
\checkmark		\checkmark		DP		
	TSP ✓	TSP VRP V V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Dynamic Programming (DP) for the TSP

Bellman equations for a set V of points (with warehouse=0):

 $\forall i \in V, \forall S \subseteq V \setminus \{0\}$: let p(i, S) denote the length of the shortest path from 0 to *i* that visits each point of *S* exactly once

 $\tilde{p}(j_2, S \setminus \{j_b\})$

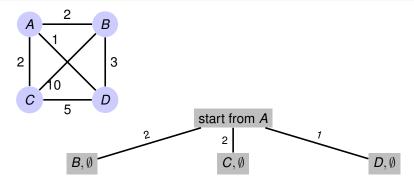
 $\sum_{j \in \mathcal{J}_k} p(j_k, S \setminus \{j_k\})$

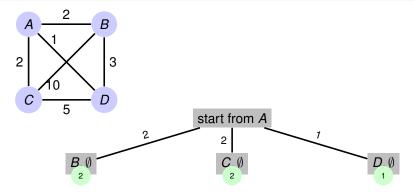
• Otherwise $p(i, S) = \min_{j \in S} p(j, S \setminus \{j\}) + d(j, i)$

 \rightsquigarrow Computation of $p(0, V \setminus \{0\})$ in $\mathcal{O}(|V|^2 \cdot 2^{|V|})$

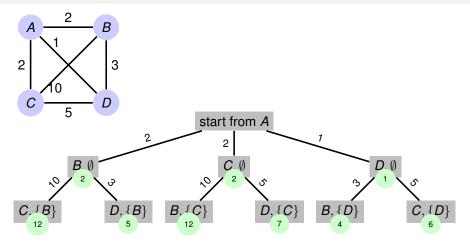
Reference:

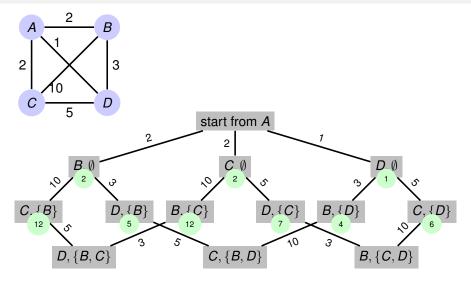
Held, Karp (1962): A dynamic programming approach to sequencing problems

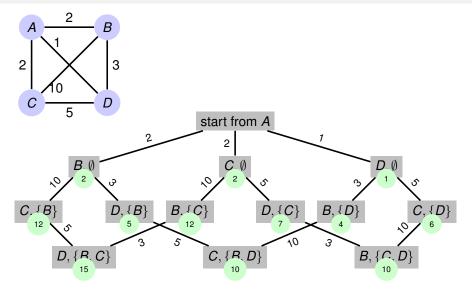


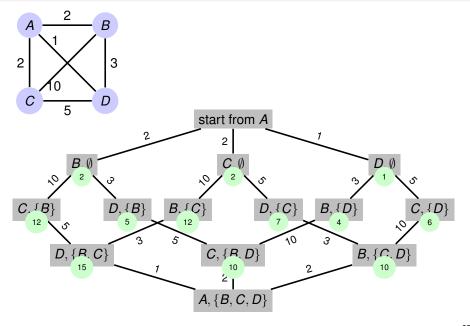


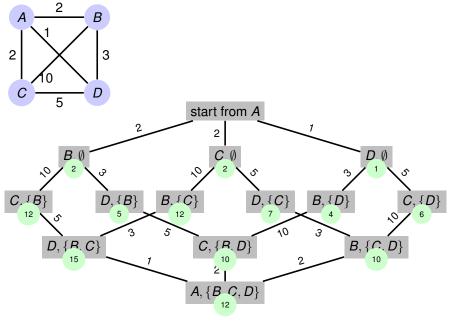












DP for the TSP

Bellman equations for a set V of points (with warehouse=0):

 $\forall i \in V, \forall S \subseteq V \setminus \{0\}$: let p(i, S) denote the length of the shortest path from 0 to *i* that visits each point of *S* exactly once

- If $S = \emptyset$, then p(i, S) = d(0, i)
- Otherwise $p(i, S) = \min_{j \in S} p(j, S \setminus \{j\}) + d(j, i)$

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space ---- Anytime and exact approach

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

 $\forall i \in V, \forall S \subseteq V \setminus \{0\}$: let p(i, S) denote the length of the shortest path from 0 to *i* that visits each point of *S* exactly once

- If $S = \emptyset$, then $p(i, S) = d(0, i, t_0)$
- Otherwise $p(i, S) = \min_{j \in S} p(j, S \setminus \{j\}) + d(j, i, p(j, S \setminus \{j\}))$

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space ---- Anytime and exact approach

References:

• Malandraki, Dial (1996): A restricted dynamic programming heuristic algorithm for the TD-TSP

• Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

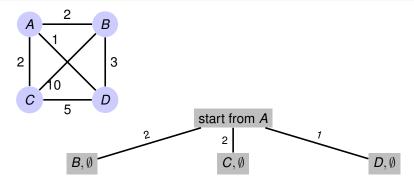
 $\forall i \in V, \forall S \subseteq V \setminus \{0\}$: let p(i, S) denote the length of the shortest path from 0 to *i* that visits each point of *S* exactly once

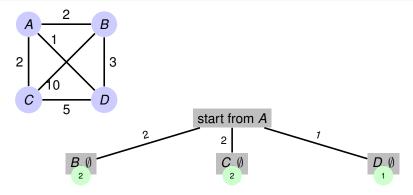
- If $S = \emptyset$, then $p(i, S) = d(0, i, t_0)$
- Otherwise $p(i, S) = \min_{j \in S} p(j, S \setminus \{j\}) + d(j, i)$

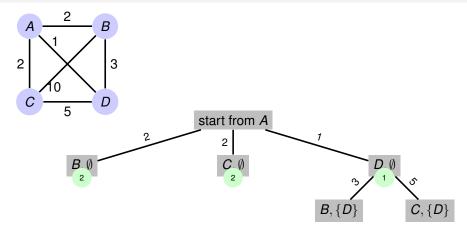
Anytime Column Search (ACS):

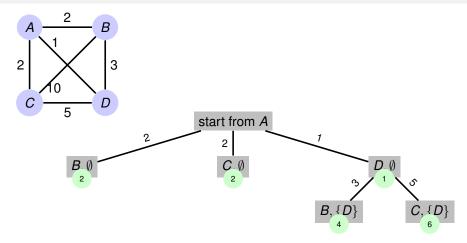
References:

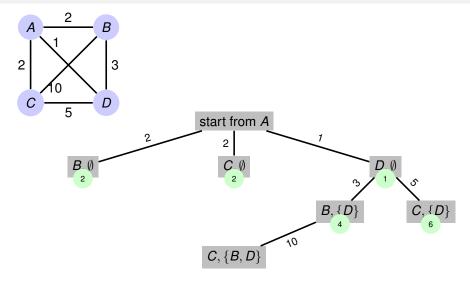
- Malandraki, Dial (1996): A restricted dynamic programming heuristic algorithm for the TD-TSP
- Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

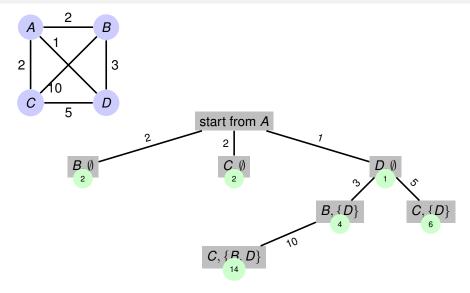


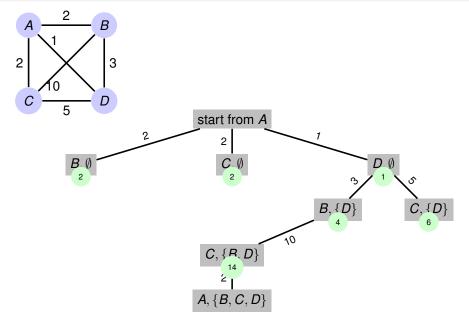


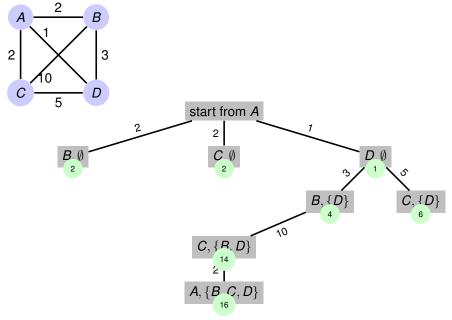


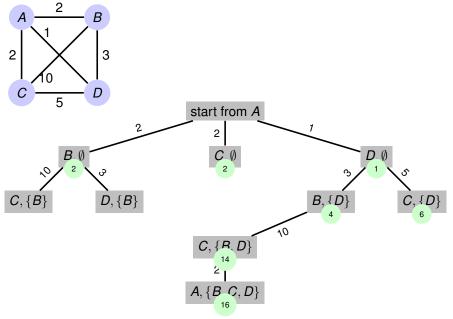


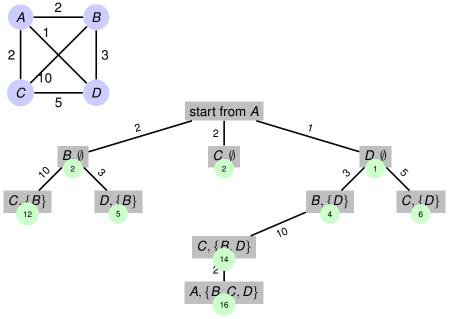


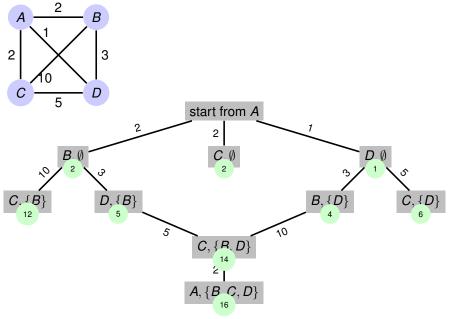


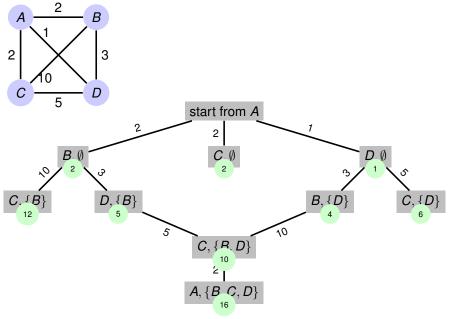


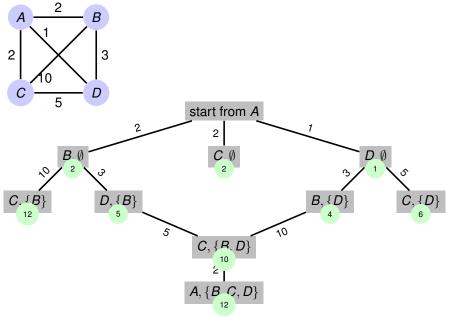


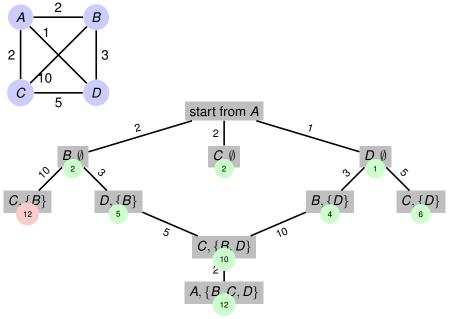


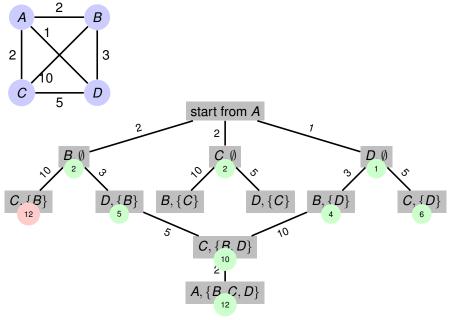


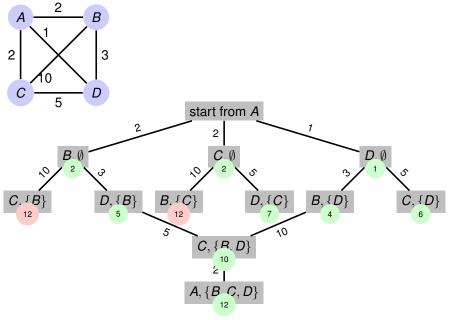


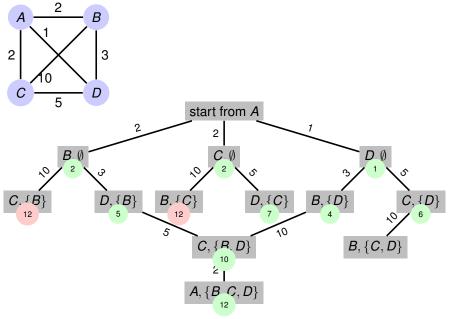


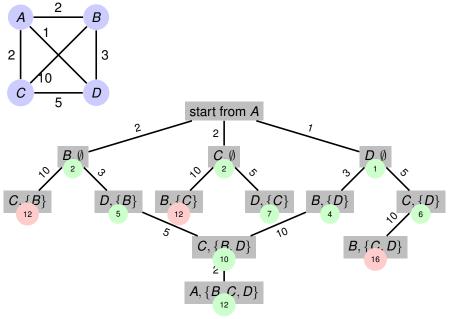


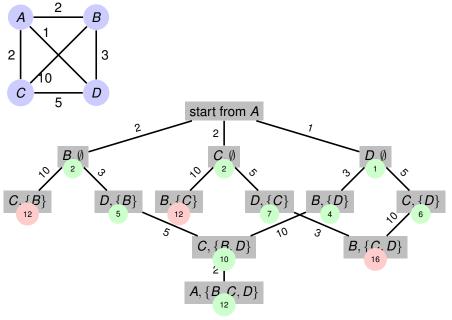


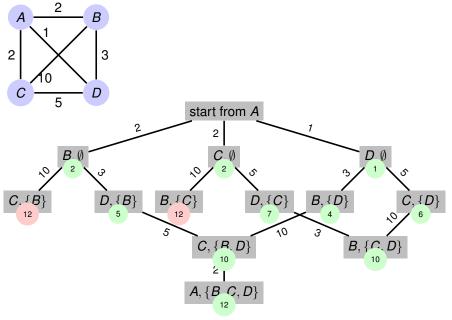


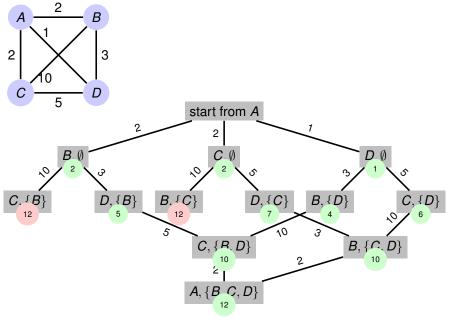












Anytime and Exact DP-based approach for the TD-TSPTW (FON22)

Combine ACS with:

- Local search to converge faster towards better solutions
- Bounding and time window propagation to prune the state space

Reference:

Fontaine, Dibangoye, Solnon (2022): *Exact and Anytime approach for solving the TD-TSP-TW*

Recent ILP approaches for the TD-TSP with Time Windows

Exploitation of common congestion patterns (ARI19):

- State-of-the-art results on instances with common congestion patterns

Dynamic Discretization Discovery (VU20):

- Dynamic time step refinement to strengthen time-indexed ILP models
- State-of-the-art results on instances with very tight time windows

References:

- Arigliano, Ghiani, Grieco, Guerriero, Plana (2019): *Time-dependent* asymmetric traveling salesman problem with time windows: Properties and an exact algorithm
- Vu, Hewitt, Boland, Savelsbergh (2020): *Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows*

Comparison of ARI19 (ILP) with FON22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

- Δ is used to control congestion pattern similarity
 → The closer Δ to 1, the more common congestion patterns
- β is used to control time window tightness
 → The closer β to 1, the tighter the time window

		Pattern B ₁					Pattern B ₂					
		Δ=.70	Δ=.80	Δ=.90	Δ=.95	Δ=.98	Δ=.70	Δ=.80	Δ=.90	Ā=.95	Δ=.98	
Ari19	β= 0	23	43	67	93	100	0	7	23	60	100	
	<i>β</i> =.25	33	53	90	100	100	7	30	63	90	97	
	<i>β</i> =.5	17	23	70	87	97	7	13	47	67	97	
	$\beta = 1$	80	73	83	87	100	73	60	67	77	77	

Percentage of solved instances within 1h:

• ARI19 is sensitive to β and to Δ

• Fon22 is sensitive to eta, but not to Δ

Comparison of ARI19 (ILP) with FON22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

- Δ is used to control congestion pattern similarity
 → The closer Δ to 1, the more common congestion patterns
- β is used to control time window tightness
 → The closer β to 1, the tighter the time window

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	oroontago or corroa motaneos manin m (on anoront compation).												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Pattern B ₂							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Δ=.70	Δ=.80	Δ=.90	Δ=.95	Δ=.98	Δ=.70	Δ=.80	Δ=.90	Ā=.95	Δ=.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ari19	β= 0	23	43	67	93	100	0	7	23	60	100
β=1 80 73 83 87 100 73 60 67 77 77 FON22 β=0 67 67 67 67 67 83 80 70 70 70 β=.25 100 100 100 100 100 100 100 100 100 100			β =.25	33	53	90	100	100	7	30	63	90	97
FON22 $\beta=0$ 67676767678380707070 $\beta=.25$ 100100100100100100100100100100			<i>β</i> =.5	17	23	70	87	97	7	13	47	67	97
β =.25 100 100 100 100 100 100 100 100 100 10			β =1	80	73	83	87	100	73	60	67	77	77
		Fon22	β= 0	67	67	67	67	67	83	80	70	70	70
β_{-5} 100 100 100 100 100 100 100 100 100 10			β =.25	100	100	100	100	100	100	100	100	100	100
p=.5 100 100 100 100 100 100 100 100 100 10			<i>β</i> =.5	100	100	100	100	100	100	100	100	100	100
β =1 100 100 100 100 100 100 100 100 10			$\beta = 1$	100	100	100	100	100	100	100	100	100	100

Percentage of solved instances within 1h (on different computers...):

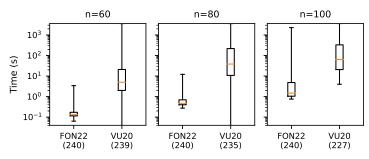
- ARI19 is sensitive to β and to Δ
- FON22 is sensitive to β , but not to Δ

Comparison of VU20 (ILP) with FON22 (DP)

Randomly generated instances of [Vu et al 2020]

- Same model as [Arigliano et al 2019]
- Instances with very tight time windows only ($\beta = 1$)
- *n* ∈ {60, 80, 100} (240 instances per value of *n*)

Solving times (on different computers...):

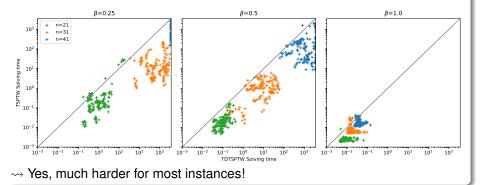


• FON22 solves all instances within 1h

• VU20 fails on 19 instances and is more than 1 order slower

Is the TD-TSP-TW harder than the TSP-TW?

Solving times of FON22 with TD costs (x) and constant costs (y):



Is it worth spending much more time?

To answer this question, we must consider realistic TD cost functions!

Construction of a realistic benchmark

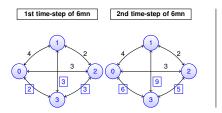
Utilisation of a simulator (SymuVia, LICIT) of the Lyon road network:

- Different levels of sensor coverage:
 - D_{Lyon}: real sensor positions (cover=7%)
 - D_{σ} with $\sigma \in \{10, 20, ..., 100\}$: cover= σ % (evenly distributed)
 - ~ Values for uncovered road segments are interpolated
- Different time-step length $l \in \{6, 12, 24, 60, 720\}$ ($l = 720 \Leftrightarrow$ static case)

Reference:

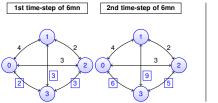
Rifki, Chiabaut, Solnon: On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours

~ Illustration on an artificial example

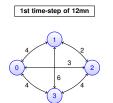


- Best : *T*⁶ = ⟨0, 3, 1, 2, 0⟩
- Arrival time = 10
- Realistic travel time rtt = 10

~ Illustration on an artificial example

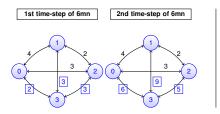


- Best : $T^6 = \langle 0, 3, 1, 2, 0 \rangle$
- Arrival time = 10
- Realistic travel time rtt = 10

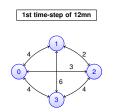


- $T^{12} = \langle 0, 1, 2, 3, 0 \rangle$
- Arrival time = 14
- rtt = 17

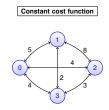
~ Illustration on an artificial example



- Best : $T^6 = \langle 0, 3, 1, 2, 0 \rangle$
- Arrival time = 10
- Realistic travel time rtt = 10



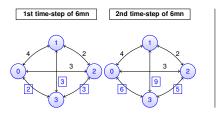
- $T^{12} = \langle 0, 1, 2, 3, 0 \rangle$
- Arrival time = 14
- rtt = 17



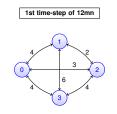
- $T^{720} = \langle 0, 2, 3, 1, 0 \rangle$
- Arrival time = 14

rtt = 19

~ Illustration on an artificial example

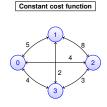


- Best : $T^6 = \langle 0, 3, 1, 2, 0 \rangle$
- Arrival time = 10
- Realistic travel time rtt = 10



•
$$T^{12} = \langle 0, 1, 2, 3, 0 \rangle$$

• Arrival time = 14
• $rtt = 17$



T⁷²⁰ = (0, 2, 3, 1, 0)
 Arrival time = 14

rtt = 19

Evaluate all tours with a same cost function

Use the cost function which is the closest to real conditions \sim **Realistic travel time (rtt)** computed with I = 6mn and $\sigma = 100\%$

Question 1: Can we find better tours when using TD Data?

Performance measure:

Gap between T^{720} and T' with $I \in \{6, 12, 24, 60\} = \frac{rtt(T^{720}) - rtt(T')}{rtt(T')} \times 100$

Results when $\sigma = 100\%$:

Answer to Question 1:

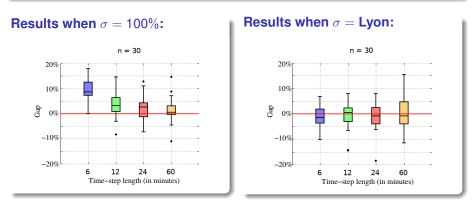
• When $\sigma = 100\%$: Yes, and the smaller the time step the larger the gain

• When $\sigma = Lyon$: No

Question 1: Can we find better tours when using TD Data?

Performance measure:

Gap between T^{720} and T' with $I \in \{6, 12, 24, 60\} = \frac{rtt(T^{720}) - rtt(T')}{rtt(T')} \times 100$



Answer to Question 1:

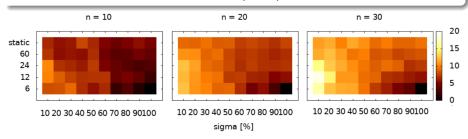
• When $\sigma = 100\%$: Yes, and the smaller the time step the larger the gain

• When $\sigma = Lyon$: No

Question 2: What is the impact of / and σ on tour quality?

Performance measure:

Gap between $T^{(l,\sigma)}$ and $T^{(6,100)} = \frac{rtt(T^{(l,\sigma)}) - rtt(T^{(6,100)})}{rtt(T^{(6,100)})} \times 100$

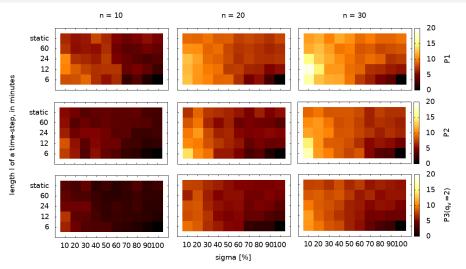


Answer to Question 2:

- The impact of *I* and *σ* increases when increasing *n*
- It is worth exploiting TD data when $\sigma = 100\%$: Tours computed with l = 720mn are 8% as long as those computed with l = 6mn when n = 30

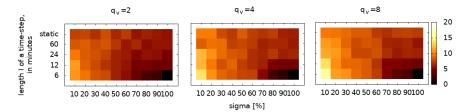
We'd better use constant data when σ ≤ 50% → Interpolation doesn't allow to compute good approximations of speed

Question 3: Does this impact change when adding constraints?



- P1 = TD-ATSP
- P2 = TD-PDP (TD-ATSP + precedence constraints)
- P3 = TD-DARP (TD-PDP + capacity constraints with capacity $q_v = 2$)

Question 3 (continued): What if we change the capacity q_{ν} ?



Answer to question 3:

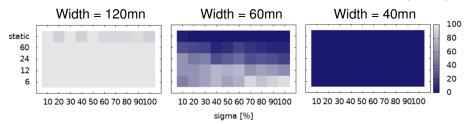
- When adding precedence or capacity constraints, the interest of exploiting TD Data decreases because these constraints decrease the number of valid tours
- The tighter the constraints, the less interesting TD Data are

Question 4: Impact of / and σ on time window satisfaction?

Performance measure:

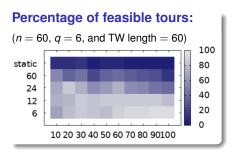
Percentage of tours for which TW are still satisfied when evaluating them with l = 6 and $\sigma = 100\%$

Results for TD-TW-ATSP when n = 40 and the number of **TW** $\in \{2, 4, 6\}$:



- When TWs are very large (120mn), all tours are still feasible except when using constant costs
- When TWs are very tight (40mn), all tours are infeasible
- Between these extreme cases, it is worth exploiting TD data even when $\sigma = 10\%$

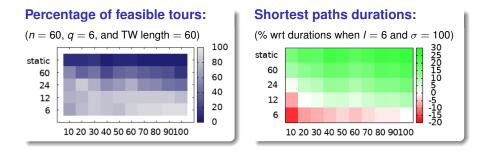
What about the TD-DARP-TW?



- Feasibility is decreased when increasing *I*, even when σ < 100%
 → Tours optimised with constant costs are nearly always infeasible
- When *I* = 6, decreasing *σ* decreases feasibility...
 ...But when *I* ≥ 12, decreasing *σ* increases feasibility

This may be explained by shortest path durations

What about the TD-DARP-TW?



- Feasibility is decreased when increasing *I*, even when σ < 100%
 → Tours optimised with constant costs are nearly always infeasible
- When *I* = 6, decreasing *σ* decreases feasibility...
 ...But when *I* ≥ 12, decreasing *σ* increases feasibility
- This may be explained by shortest path durations

Conclusion: Two main challenges for TD routing problems

Scalability:

TD problems are much more difficult than constant ones ~ Some instances with 40 points to visit are not solved within 1h

Reliability:

Getting reliable TD cost functions is not an easy task!

- The number of sensors has a strong impact on reliability
 What about their position?
- So far, we have assumed that we have perfect predictive models ~→ Is it really the case?

Conclusion: Is it worth exploiting time-dependent data?

It depends on the goal!

- If the goal is to reduce tour durations:
 → Not really if we don't have perfect TD Data
- If the goal is to better satisfy time window constraints:
 Yes, even when only 10% of the road segments have sensors

What about carbon footprint?

- What is the cost of getting reliable TD Data?
- Can TD problems ease shared and multi-modal mobility?

 ---> Work with social scientists on this question!?

Prescriptive Data Analytics

- **Context: Prescriptive Analytics for Urban Deliveries**
- 2 What kind of Data can we exploit?
- Optimisation with Time-Dependent Data
- Optimisation with uncertain data
- 5 Conclusion
- Parenthesis on Constrained Optimization

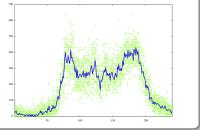
Motivations

Optimisation with Data coming from predictive models:

- A prediction may be wrong What should we do in this case?
- Some predictions are more reliable than others
- Can we anticipate with respect to likely events?

Context of this work:

PhD thesis of Michael Saint Guillain defended in 2019 (co-tutelle with Louvain-la-neuve, Belgium, co-supervised with Yves Deville)



Classical optimisation problems

Problems are defined by means of:

- Input Data
- Decision variables (X) and their domains (D)
- Constraints to be satisfied (C)
- Objective function to optimise (F)

Solution:

Assign values to variables so that all constraints are satisfied and the objective function is optimal

What can we do when observed Data \neq input Data?

- Recompute a new solution wrt new Data
- Drawbacks:
 - Re-computation is time consuming
 - The new solution may be much worse than the one computed by anticipating wrt likely events

Stochastic Optimisation Problems

Stochastic problems are defined by means of:

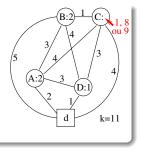
- Input Data known with certainty
- Uncertain input Data = Random variables
- Decision variables (X) and their domains (D)
- Constraints to be satisfied (C)
- Objective function to optimise (F)

Example: VRP with stochastic demands

- Certain data: points to deliver, distances, vehicle capacity
- Uncertain data: demands
- Probability distributions of demands:

•
$$p(r_A = 2) = p(r_B = 2) = p(r_D = 1) = 1$$

• $p(r_C = 1) = \frac{1}{3}, p(r_C = 8) = \frac{1}{3}, p(r_C = 9) = \frac{1}{3}$

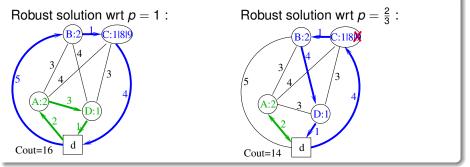


Robust solutions for stochastic optimisation problems

Ensure the feasibility of the solution wrt some given probability p:

Goal = Assign values to variables so that the objective function is optimal and the probability that constraints are satisfied is greater than p

Example: Robust solutions for the VRP with stochastic demands



Stochastic Constraint Programming [Walsh 2009, Piette 2016]

Used for General Game Playing: WoodStock winner of IGGPC 2016

Flexible solutions for stochastic optimisation problems

Optimise the expected cost of adapted solutions:

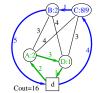
- Define an adaptation procedure to be applied when random variables are realised = Simple (and fast) procedure
- Before the beginning of random variable realisations (*offline*) : Compute an *a priori* solution = Assign values that optimise the expectation of the objective function wrt the adaptation procedure
- Each time a random variable is realised (*online*) :
 Apply the adaptation procedure

Ex.: Adaptation procedure for the VRP with stochastic demands

Go back to the depot if current load + next demand > k

A priori Solution for k = 11:

Adapted solution if $r_C = 8 \text{ or } 9$:



Expectation Optimisation vs Average Problem Optimisation

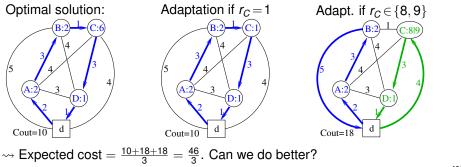
Problem (recall):

Request probability distributions:

•
$$p(r_A = 2) = p(r_B = 2) = p(r_D = 1) = 1$$

• $p(r_C = 1) = \frac{1}{3}, p(r_C = 8) = \frac{1}{3}, p(r_C = 9) = \frac{1}{3}$

What if we consider the "average" problem (i.e. $r_C = 6$)?



k=11

Expectation Optimisation vs Average Problem Optimisation

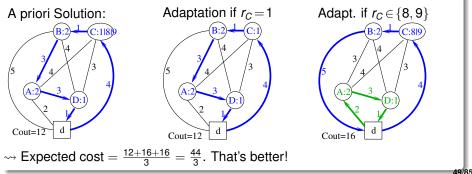
Problem (recall):

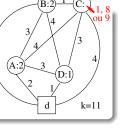
Request probability distributions:

•
$$p(r_A = 2) = p(r_B = 2) = p(r_D = 1) = 1$$

• $p(r_C = 1) = \frac{1}{3}, p(r_C = 8) = \frac{1}{3}, p(r_C = 9) = \frac{1}{3}$

Optimisation of the expected cost of adapted solutions:





Expectation Optimisation vs Average Problem Optimisation

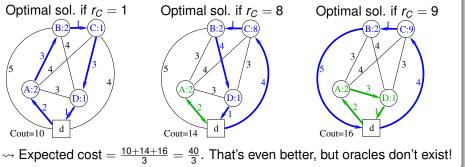
Problem (recall):

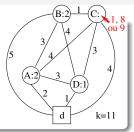
Request probability distributions:

•
$$p(r_A = 2) = p(r_B = 2) = p(r_D = 1) = 1$$

• $p(r_C = 1) = \frac{1}{3}, p(r_C = 8) = \frac{1}{3}, p(r_C = 9) = \frac{1}{3}$

What if we have an oracle that knows the future?





9/85

How to compute the expected cost of an *a priori* solution

~ Use Dynamic Programming

Example: Stochastic TSP

- Uncertain Data = Vertices to visit (some clients may be missing)
- Stochastic knowledge: Each vertex *i* is present with probability *p*(*i*) and missing with probability 1 *p*(*i*)
- A priori solution: Hamiltonian cycle $(v_0, v_1, \ldots, v_n, v_0)$
- Adaptation: Skip vertices associated with missing clients

Bellman equations to compute the expected cost:

Let $e(v_i)$ = expected length of the adaptation of $(v_i, v_{i+1}, \ldots, v_n, v_0)$

• If
$$i = n$$
, then $e(v_i) = d_{v_i, v_0}$

- Otherwise, $e(v_i) = \sum_{j=i+1}^{n} Pr(v_i, v_j) * (d_{v_i, v_j} + e(v_j))$
 - $Pr(v_i, v_j) = \text{proba that } v_j \text{ is present and } v_{i+1}, \dots, v_{j-1} \text{ are missing}$ $\rightsquigarrow Pr(v_i, v_j) = (1 - p(v_{i+1})) * \dots * (1 - p(v_{j-1})) * p(v_j)$

Expectation of an *a priori* solution = $e(v_0)$ computed in $O(n^2)$

Problem: Not always possible to find Bellman's equations...

How to compute the expected cost of an a priori solution

~ Use Monte Carlo sampling

Expected cost of an *a priori* solution $A = \sum_{s \in S} Pr(s) \cdot cost_A(s)$

- S is the set of all possible scenarios
- cost_A(s) = cost of A adapted to s

Example: Expectation of the length of a tour for the Stochastic TSP

- Scenario = subset of vertices (corresponding to present clients)
- For each subset $s \subseteq V$:
 - Probability of $s = \prod_{i \in S} p(i) * \prod_{i \in V \setminus S} (1 p(i))$
 - cost_A(s) = length of the subcycle of A that only contains nodes of s

Problem: The number of scenarios is exponential

Approximation with Monte-Carlo Sampling:

- Generate a representative subset of scenarios using probabilities
- For each sampled scenario, compute the cost of the adapted solution
- Return the average cost

Computation of an a priori solution with optimal expected cost

Exact approach: Branch & Cut (Integer L-shaped method)

- Drop some constraints (integrality, subtour elimination, etc)
- Replace the non-linear obj. function by a lower bounding variable z
- Iterate:
 - Solve the current problem
 - Add feasibility cuts if dropped constraints are violated
 - Add optimality cuts if z < actual expected cost

Meta-Heuristic approaches (most often, local search-based):

- Generate an initial a priori solution
- While termination conditions not reached:
 - Change the values of some decision var. wrt some heuristics (≠ possible heuristics: greedy, simulated annealing, tabu, etc)
 - Evaluate the impact on the expected cost
 - Accept or not the changes wrt some meta-heuristics
- Return the best a priori solution

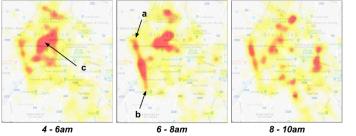
Application to Police Patrol Management in Brussel

Description of the problem:

- Requests are revealed during the day, and must all be accepted
- Goal: Minimise service time expectation

Historical Data from 2013 to 2017:

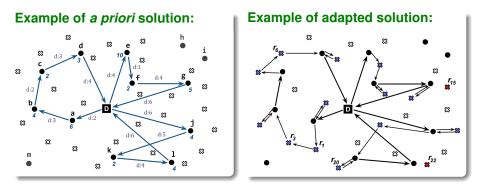
 \rightsquigarrow Evolution of request localisation wrt time



Reference:

Saint-Guillain, Paquay, Limbourg: *Time-dependent stochastic vehicle routing problem with random requests: Application to online police patrol management in Brussels*

Introduction of waiting vertices and waiting times

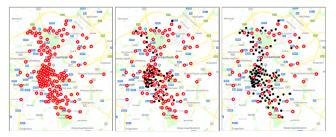


New algorithms:

- Dyn. prog. to compute exp. cost in O(n²h³q) time and O(nh²q) space (n = nb of vertices, h = nb of time steps, q = max. capacity)
- Local Search approach to compute an approximate a priori solution

Choice of locations by spatial clustering

Waiting locations ($\in \{150, 100, 50\}$):



55/85

Results

Average relative gain wrt Wait & Serve strategy:

	Nb of v	vaiting loo		
	50	100	150	Wait & Serve
3 vehicles				11.6 mn
4 vehicles		26.2%		10.3 mn
6 vehicles	38.6%	39.3%	38.1%	10.0 mn

Conclusions:

- Exploiting stochastic knowledge allows to reduce service time
- Gain increases when increasing the number of vehicles
- Gain doesn't increase with the number of waiting locations
 Increasing the nb of waiting locations increases the search space size

Prescriptive Data Analytics

- **Context: Prescriptive Analytics for Urban Deliveries**
- 2 What kind of Data can we exploit?
- 3 Optimisation with Time-Dependent Data
 - Optimisation with uncertain data

Conclusion

Parenthesis on Constrained Optimization

Conclusion

How to exploit huge amounts of sensed Data?

- Descriptive analytics to understand
- Diagnostic analytics to explain
- Predictive analytics to forecast
- Prescriptive analytics to optimise
 - Time-Dependent optimisation for temporal Data
 - Stochastic optimisation for uncertain Data

Where are the challenges?

- NP-hard problems for which complete approaches hardly scale
- Citizens must be ready to use these smart services
 ... or smart services should adapt themselves to citizens!

Hot multidisciplinary research field!

Prescriptive Data Analytics

- **Context: Prescriptive Analytics for Urban Deliveries**
- 2) What kind of Data can we exploit?
- Optimisation with Time-Dependent Data
- Optimisation with uncertain data
- 5 Conclusion

Constrained Optimization

Model of a Constrained Optimization Problem (COP):

- \rightsquigarrow Define (X, D, C, F) with:
 - X = Set of variables (unknowns)
 - D = function which defines the domain D(x_i) of every variable x_i ∈ X
 → D(x_i) = Set of values that may be assigned to x_i
 - C = Constraints (relations between variables of X)
 - $F: X \to \mathbb{R}$ = objective function to optimize

Solution of a problem (X, D, C, F):

Assignment of a value to every variable of X such that:

- Each variable $x_i \in X$ is assigned to a value that belongs to $D(x_i)$
- Every constraint of C is satisfied
- F is maximized (or minimized)

Remark: A problem may have several different models...

Example: Model for the TSP

Variables: $X = \{x_{i,j} \mid i, j \in V \times V, i \neq j\}$ with $D(x_{i,j}) = \{0, 1\}$ $\rightsquigarrow x_{i,j} = 1$ if we travel to *j* just after *i*

Constraints:

• $\forall i \in V$, we must visit *i* once:

$$\forall i \in V, \sum_{j \in V} x_{i,j} = \sum_{j \in V} x_{j,i} = 1$$

• $\forall S \subset V$, no subtour:

$$orall \mathcal{S} \subset \mathcal{V}, \sum_{(i,j) \in \mathcal{S} imes \mathcal{S}} x_{i,j} < |\mathcal{S}|$$

Objective function: Minimize $\sum_{(i,j) \in S \times S} d_{i,j} * x_{i,j}$

Example for the tour $0 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 0$

$$x_{0,3} = x_{3,1} = x_{1,2} = x_{2,4} = x_{4,0} = 1$$

Example: Other model for the TSP

Variables: $X = \{next_i, visit_i \mid i \in V\}$

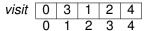
- D(next_i) = V \ {i}
 → next_i = j if the vertex visited after i is j
- D(visit_i) = V
 → visit_i = j if the *i*th visited vertex is j

Constraints:

- We start from and return back to 0: visit₀ = 0 and next_{visit_{n-1}} = 0
- The next of $visit_{i-1}$ is $visit_i$: $\forall i \in V \setminus \{0\}$, $visit_i = next_{visit_{i-1}}$
- Each vertex is visited once: allDifferent(visit)
- Each vertex follows a different vertex: allDifferent(next)

Objective function: Minimize $\sum_{i \in V} d_{i,next_i}$

Example for the tour $0 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 0$



Some particular cases

- No constraint:
 ~> Optimization problem
- No objective function:
 → Constraint Satisfaction Problem (CSP)
- Domains are discrete (enumerable)
 ~> Combinatorial problem
- F linear, D = ℝ and C = linear inequalities
 → Linear Programming (LP)
- F linear, D = Z and C = linear inequalities
 → Integer Linear Programming (ILP)
- *F* linear, *D* = {0, 1} and *C* = linear inequalities
 → Knapsack problem
- *F* quadratic, *D* = ℝ and *C* = linear inequalities
 → Quadratic Problem

Complexity

Some particular cases have polynomial complexities:

- Linear programming with continuous domains
- 2-SAT
- Assignment problems
- Shortest path problems
- ...

They are most often NP-hard:

- ILP, Knapsack
- SAT, 3-SAT, Planar-3-SAT, ...
- Many graph problems: Coloring, TSP, max Clique, ...
- CSP with finite domains
- ...

In some cases they are undecidable:

- Diophantine equations
- CSP with non finite domains

o ...

How to solve NP-hard problems?

- Some NP-hard problems become polynomial when adding constraints
- Some NP-hard problems may be approximated in polynomial time (with bounds on errors)
- Otherwise, we have to be intelligent when exploring the search space
 - Heuristic approaches:
 - \rightsquigarrow Avoid explosion by ignoring some parts of the search space
 - Complete approaches:
 - ~ Prevent explosion by structuring and filtering search space

Heuristic approaches

Exploration guided by (meta-)heuristics

- Intensify search around the most promising areas
- Diversify search to discover new areas

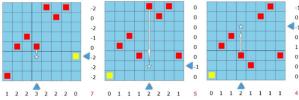
Two kinds of heuristic approaches

- Perturbative: Modify existing combinations
 - Ex: Local search (LS), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), ...

• Constructive: Build new combinations from scratch

• Ex: Ant Colony Optimization (ACO), Estimation of Distribution Algorithms (EDA), ...

Example of local search for the 8-queen problem:



Complete approaches

Ad hoc approaches

- Branch & Bound, Branch & Cut, Branch & Price, ...
- Dynamic programming
- ...

Generic approaches: Problem ~> Model ~> Generic solver

- MILP (*Mixed Integer Linear Programming*)
 ~~ Numerical variables; Constraints = Linear inequalities
- SAT (satisfiability of Boolean formulae)
 → Boolean variables; Constraints = Logical clauses
- CP (Constraint Programming)
 Any kind of variables and constraints

Why using CP?

- Ease of modelling
- Efficiency

Why using CP instead of SAT?

Magic Square

• SAT: 256 variables and ~65000 clauses

 CP: % All different on cells constraint all different (i, j in 1..4)(magic[i,j]);
 % sum in rows

```
constraint forall (i in 1..4) (
    sum(j in 1..4)(magic[i,j]) = 34 );
```

```
% sum in columns.
constraint forall (j in 1..4) (
    sum(i in 1..4)(magic[i,j]) = 34 );
```

```
% sum in diagonals.

constraint

sum(i in 1..4)(magic[i,i]) = 34;

sum(i in 1..4)(magic[i,4-i+1]) = 34;
```

```
solve satisfy;
```


Why using CP instead of SAT?

Pigeon Hole

- In 2010, SAT was not able to solve it with more than 15 pigeons (no polynomial-size proof)
- · CP solves it in milliseconds

Slide from Christian Bessière

Why using CP instead of ILP?

Nurse Rostering

Linear Programming: more than
 10.000 lines

CP:

int: 0 = 6; int: q0 = 1; set of int: STATES = 1..0; array[STATES, SHIFTS] of int: t = [2.3.1 % state 1 4.4.1 % state 2 4.5.1 % state 3 6.6.1 % state 4 6.0.1 % state 5 | 0. 0. 1|1: % state 6 arrav[NURSES.DAYS] of var SHIFTS: roster: constraint forall(i in DAYS)(sum(i in NURSES)(bool2int(roster[i,j] == d)) == req_day /\ sum(i in NURSES)(bool2int(roster[i,j] == n)) == req_night): constraint forall(i in NURSES)(regular([roster[i,j] | j in DAYS], Q, S, t, q0, STATES) /\ sum(i in DAYS)(bool2int(roster[i,i] == n)) >= min_night): solve satisfy;

Employee shift rostering

There are many more soft constraints

Slide from Christian Bessière

Why using CP instead of ILP?

- In 1995, ILP was not able to solve the NHL problem with more than 12 teams (NHL involves 30 teams)
- · CP solved it up to 60 teams

Slide from Christian Bessière

Why using CP instead of a dedicated approach?

~ Differential cryptanalysis of AES

Basic model in Picat:

```
basicModel(R, ObiStep1, DX, DY, DK) =>
    DX = new_array(R, 4, 4),
                                DX :: 0..1,
    DY = new_array(R-1,4,4), DY :: 0..1,
    DK = new array(R, 4, 4),
                                DK :: 0..1,
    foreach (I in 1...R-1, J in 1...4, K in 1...4)
                                                   90000% ARK constraint
        sum([DY[I,J,K],DK[I+1,J,K],DX[I+1,J,K]]) #!= 1
    end,
    foreach(I in 1...R-1, K in 1...4)
                                                     3000006 MC constraint
        DX[I.1.K] + DX[I.2.(K mod 4)+1] + DX[I.3.((1+K) mod 4)+1] + DX[I.4.((2+K) mod 4)+1] + DY[I.1.K] + DY[I.2.K] + DY[I.3.K] + DY[I.4.K] #= S.
        S notin 1..4
    end.
    foreach(I in 2..R, J in 1..4)
                                                     300000% KS constraint
        sum([DK[I-1, J, 1], DK[I-1, (J mod 4)+1, 4], DK[I, J, 1]]) #!= 1,
        foreach(K in 2..4)
            sum([DK[I-1, J, K], DK[I, J, K-1], DK[I, J, K]]) #!= 1
        end
    end.
    sum([[DX[I,J,K] : I in 1..R, J in 1..4, K in 1..4]) + sum([DK[I,J,4] : I in 1..R, J in 1..4]) #= ObjStep1.
```

Advanced model in Picat:

- Less than 200 lines of code
- Solve all instances in less than 4h (for keys of 128, 192, and 256 bits)
 - Branch & Bound [Biryukov et al 2010] :
 → Several days (weeks) for keys of 128 (192) bits
 - Graph traversal [Fouque et al 2013] :
 ~> 30mn/12 cores for 128 bits, but 60GB of RAM

CP Langages and Libraries

- ALICE [Jean-Louis Laurière, 1976]
 → First CP approach
- CHIP, Prolog V, Gnu-Prolog, Picat → Extensions of Prolog
- CHOCO (Java), Gecode (C++), OR-Tools (C++) ~→ Open source libraries
- OPL Development Studio (IBM)
 → Modelling language + CP + MIP

• ...

Example: Choco code for the TSP

```
public void solveTSP(Graph g) {
    Model model = new Model("TSP");
    // Create variables
    IntVar[ next = new IntVar[g.getNbVertices()];
    for (int i = 0; i < g.getNbVertices(); i++)
        next[i] = model.intVar(g.getSucc(i));
    IntVar[ cost = model.intVarArray(g.getNbVertices(), g.getMinCost(), g.getMaxCost();
    IntVar totalCost = model.intVar(g.getNbVertices()*g.getMinCost(), g.getNbVertices()*g.getMaxCost();
    IntVar totalCost = model.intVar(g.getNbVertices()*g.getMinCost(), g.getNbVertices()*g.getMinCost();
    IntVar totalCost = model.intVar(g.getNbVertices()*g.getMinCost();
    IntVar totalCost = model.intVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.getNbVertices()*g.getMinCost();
    IntVar(g.g
```

```
// Add constraints
for (int i = 0; i < g.getNbVertices(); i++)
    model.element(cost[i], g.getCost(i), next[i]).post();
model.circuit(next,0).post();
model.sum(cost, "=", totalCost).post();</pre>
```

```
// Solve
model.setObjective(Model.MINIMIZE, totalCost);
while (model.getSolver().solve());
```

}

Example: OPL model for the ATSP

Input Data:

- 1 range Points = 1..nbPoints;
- 2 int duree[Points][Points] = ...

Variables :

- 1 dvar int visit[Points] in Points;
- 2 dvar int h[Points] in T;

```
/* visit[i] = ième point visité */
/* h[i] = heure d'arrivée sur i */
```

Objective function to optimize and constraints:

```
1 minimize h[v<sub>final</sub>];
2 subject to {
        visit[1] == V_{init};
                                                                                /* On part de Vinit */
3
        h[v_{init}] == t_0;
                                                                                   /* à l'heure t_0 * /
        visit[nbPoints] == V_{final};
                                                                     /* et on termine sur V<sub>final</sub> */
5
        allDifferent(visit);
                                                     /* Chaque point est visité une fois */
6
        forall(i \in 1..nbPoints - 1){
7
             h[visit[i+1]] == h[visit[i]] + duree[visit[i]][visit[i+1]]
8
9
10 }
```

Generic Solving Algorithm

1 Function solve(X, D, C)

	Input	: A CSP (X, D, C)
	Precondition	: (X, D, C) is locally consistent
	Postcondition	: Return a solution of (X, D, C) or \emptyset if no solution
2	if for each variable $x_i \in X$, $ D(x_i) = 1$ then return D;	
3	Choose a variable $x_i \in X$ such that $ D(x_i) > 1$	
4	for each value $v \in D(x_i)$ do	
5	Save D and reduce $D(x_i)$ to $\{v\}$	
6	if (X, D, C) is locally consistent then	
7	$Sol \leftarrow solve(X, D, C)$	
8	if Sol $\neq \emptyset$ then return Sol;	
9	Restore D	
10	return Ø	

Generic Solving Algorithm

1 Function solve(X, D, C)

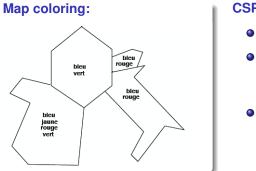
```
Input
                               : A CSP (X, D, C)
        Precondition : (X, D, C) is locally consistent
        Postcondition
                               : Return a solution of (X, D, C) or \emptyset if no solution
        if for each variable x_i \in X, |D(x_i)| = 1 then return D;
2
        Choose a variable x_i \in X such that |D(x_i)| > 1
3
        for each value v \in D(x_i) do
4
             Save D and reduce D(x_i) to \{v\}
5
             if (X, D, C) is locally consistent then
6
                  Sol \leftarrow solve(X, D, C)
7
                  if Sol \neq \emptyset then return Sol;
8
             Restore D
9
        return Ø
10
```

Local consistency of a CSP (X, D, C)

Check that each constraint can be satisfied

- Different levels of consistency may be considered
- Simplest consistency: check constraints whose variables have singleton domains

Exercise



CSP:

• $X = \{F, E, S, I\}$

•
$$D(F) = \{b, v\},\ D(E) = \{b, j, r, v\},\ D(S) = D(I) = \{b, r\}$$

•
$$C = \{F \neq E, F \neq S, F \neq I, S \neq I\}$$

Build the search tree (tree of the recursive calls to *solve*) \rightsquigarrow Choose variables according to the order: F, E, S, I

Improvements of *solve*: Constraint propagation

Why propagating constraints?

- Avoid encoutering several times a same inconsistency
 → Filter domains to ensure some given consistency
 → No recursive call if a domain is empty
- Different consistency levels may be considered: Arc Consistency (AC), k-consistency, Singleton AC, etc
 Different strengthes and different complexities

Most popular consistency: AC

 Let *c* be a constraint defined over a set X_c of *k* variables. *c* is AC if: ∀x_i ∈ X_c, ∀v_i ∈ D(x_i), ∀x_j ∈ X_c \ {x_i}, ∃v_j ∈ D(x_j) such that *c* is satisfied by the assignment x₁ = v₁, ..., x_k = v_k

Different algorithms for ensuring AC

- AC3 (binary constraints): $\mathcal{O}(ed^3)$ in time; $\mathcal{O}(e)$ in space
- AC2001 (binary constraints): $\mathcal{O}(ed^2)$ in time; $\mathcal{O}(ed)$ in space
- STR: O(t) in time and space (t = number of allowed tuples)

Exercise

CSP associated with map coloring (recall):

•
$$X = \{F, E, S, I\}$$

•
$$D(F) = \{b, v\}, D(E) = \{v\}, D(S) = D(I) = \{b, r\}$$

•
$$C = \{F \neq E, F \neq S, F \neq I, S \neq I\}$$

Filter domains to ensure AC

Improvements of solve: Learning from failures

What can we do when a domain becomes empty?

- backtrack: Go back to the last call
- backjump: Go back to the call that assigned the last variable involved in the failure
- Learn nogoods: Add the failure cause to constraints

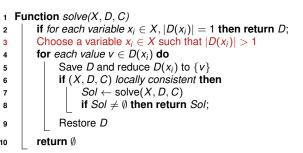
Example

•
$$X = \{x_1, x_2, x_3, x_4, x_5\}$$

• $D(x_1) = \{5,6\}, D(x_2) = \{2,3\}, D(x_3) = \{3,4\}, D(x_4) = D(x_5) = \{4,5\}$

All variables must be assigned to different values

Improvements of solve: Ordering heuristics



Variable ordering heuristics

- deg: Variable involved in the largest number of constraints
 Reduce tree depth
- dom: Variable with the smallest domain
 ~> Reduces tree width
- dom dom and deg
- dom/wdeg: Each constraint has a weight (incremented on failures)
 → divide |D(x_i)| by sum of weights of constraints associated with x_i

Improvements of solve: Ordering heuristics

```
1 Function solve(X, D, C)
        if for each variable x_i \in X, |D(x_i)| = 1 then return D;
2
        Choose a variable x_i \in X such that |D(x_i)| > 1
3
        for each value v \in D(x_i) do
4
             Save D and reduce D(x_i) to \{v\}
5
             if (X, D, C) locally consistent then
6
                   Sol \leftarrow solve(X, D, C)
7
                  if Sol \neq \emptyset then return Sol;
8
             Restore D
9
        return Ø
10
```

Value ordering heuristics

Choose values that are more likely to belong to solutions \rightsquigarrow No universal heuristic

- May be learned... but this may be expensive
- Useless for proving inconsistency of infeasible instances
- 95% of the solving time is spent on inconsistent sub-trees

Global constraints

What is a global constraint?

Constraint defined over a set of constraints (the cardinality of which is not fixed)

Examples of global constraints:

- allDifferent(x_1, \ldots, x_n)
- $\operatorname{sum}(x_1,\ldots,x_n,s)$
- atLeast (x_1, \ldots, x_n, k, v)

Why global constraints?

- Ease modelling
- Improve propagation:
 - → filter more values and/or reduce time complexity

Decomposition of global constraints

How to decompose a global constraint?

Replace the constraint with an equivalent set of non global constraints

Example 1: allDifferent (x_1, \ldots, x_n) • $\forall i, j \in [1, n], i \neq j : x_i \neq x_i$

Example 2: atLeast(x_1, \ldots, x_n, k, v)

Introduction of *n* new variables s_1, \ldots, s_n such that $D(x_i) = [0, i]$

•
$$s_1 = (x_1 == v)$$

• $\forall i \in [2, n] : s_i = s_{i-1} + (x_i == v)$
• $s_n \ge k$

Example 3: $sum(x_1, \ldots, x_n, s)$

Introduction of *n* new variables s_1, \ldots, s_n

•
$$s_1 = x_1$$

• $\forall i \in [2, n] : s_i = s_{i-1} + x_i$

•
$$s = s_n$$

Propagation of global constraints

AC-decomposable constraint

There exists a polynomial size decomposition such that the decomposition is AC iff the global constraint is AC

Example: atLeast(x_1, \ldots, x_n, k, v) is AC-decomposable

Propagating the constraints $s_i = s_{i-1} + (x_i == v)$ filters the same values as propagating atLeast(x_1, \ldots, x_n, k, v), but more efficiently

Example: sum (x_1, \ldots, x_n, s) is not AC-decomposable

Proof: deciding if an instance of sum is AC is an $\mathcal{NP}\text{-hard}$ problem

What about allDifferent?

- The binary decomposition filters less values
- Deciding if an instance of *allDifferent* is AC is in \mathcal{P}
- Can we find a decomposition that preserves AC?
 ~> No!

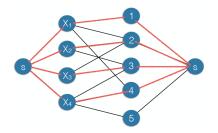
Dedicated filtering algorithms

What can we do when a constraint is neither $\mathcal{NP}\text{-hard}$ nor AC-decomposable?

→ Implement a propagation algorithm that ensures AC in polynomial time!

Propagation of allDifferent

~ Matching algorithm of Hopcroft and Karp (1973)



allDifferent(x_1, x_2, x_3, x_4)

- $D(x_1) = \{1, 2, 4\}$
- $D(x_2) = \{2, 3\}$
- $D(x_3) = \{2, 3\}$
- $D(x_4) = \{3, 4, 5\}$

Figure from Christian Bessière

Dedicated filtering algorithms

What can we do when a constraint is neither $\mathcal{NP}\text{-hard}$ nor AC-decomposable?

→ Implement a propagation algorithm that ensures AC in polynomial time!

Propagation of allDifferent

→ Matching algorithm of Hopcroft and Karp (1973)

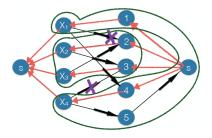


Figure from Christian Bessière

 $allDifferent(x_1, x_2, x_3, x_4)$

- D(x₁) = {1, 2, 4}
 → remove 2 from D(x₁)
- $D(x_2) = \{2,3\}$
- $D(x_3) = \{2, 3\}$
- D(x₄) = {3, 4, 5}
 → remove 3 from D(x₄)