Prescriptive Data Analytics J

Christine Solnon

5IF - 2022-2023

1/85

Prescriptive Data Analytics

o Context: Prescriptive Analytics for Urban Deliveries

2/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data
What are the traffic conditions right now?

2/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data
What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAl)
Why is there a traffic jam right now?

2/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data
What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAl)
Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future
What will be traffic conditions in 30 mn?

2/85

Four levels of Data Analytics

Descriptive Analytics :
Extract Knowledge from Data
What are the traffic conditions right now?

Diagnostic Analytics :
Explain why some events occur (XAl)
Why is there a traffic jam right now?

Predictive Analytics :
Build models to predict future
What will be traffic conditions in 30 mn?

Prescriptive Analytics :
Assist decision making / Make decisions
What is the best route if | leave at 8:25?

DE ‘0 43 Boulevard du 11 Nove x

A | © ENS deLyon-SiteMonc x

@© Maintenant Plus tard

Calcul tenant compte des condltions de circulation
en temps réel...

Départ : 08h25 | Arrivée : 09h02 37 min

| > Ma solution &

> Mes solutions alternatives

&b 38 min

Départ : 08h25 | Arrivée : 09h03

| 43 min

Départ : 08h28 | Arrivée : 09h11

2/85

Basic urban delivery problem

Problem:
Given a city map and delivery addresses, compute the shortest tour J

4/85

Basic urban delivery problem

Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

@ Compute the shortest path graph

b D acantng o

4/85

Basic urban delivery problem

Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

@ Compute the shortest path graph

Moligre Rue Bu*?!
Vauban

Jules Fert
- Récamie

4/85

Basic urban delivery problem

Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

@ Compute the shortest path graph

4/85

Basic urban delivery problem

Problem:

Given a city map and delivery addresses, compute the shortest tour

Solution process in two steps:

@ Compute the shortest path graph

@ Solve the Asymetric Traveling Salesman Problem (ATSP) in this graph

4/85

Some Classical Variants

Vehicle Routing Problem (VRP)
@ Deliveries are associated with demands
@ There are several vehicles with limited capacities

Pickup and Delivery Problem (PDP)

Each request is composed of a pickup point and a delivery point
~ A delivery point cannot be visited before its corresponding pickup point

Dial A Ride Problem (DARP)
PDP with a limited capacity vehicle

Addition of Time Windows (TSP-TW, VRP-TW, PDP-TW, DARP-TW)
Each point i must be visited within a time-window

Various objective functions:
Travel duration, Arrival time, Number of vehicles, ...

5/85

What’s difficult in classical problems?

Compute shortest paths between two points?
Easy and well solved problem:

@ Efficient algorithms (polynomial time)
~» For example, Dijkstra or A*

6/85

What’s difficult in classical problems?

Compute shortest paths between two points?
Easy and well solved problem:

@ Efficient algorithms (polynomial time)
~» For example, Dijkstra or A*

Compute optimal tours in the shortest path graph?
NP-hard problems

@ Theory: No algorithm can compute the optimal solution in polynomial
time (unless P = A'P)

@ Practice: Use Artificial Intelligence!

6/85

New Data for New Problems

Classical problems:
@ All Data are known when optimising tours ~~ Deterministic Problems

@ Travel durations are constant ~» Constant Problems

Ex: Average travel duration on section 18 = 42, ...

New Data ~~ New Problems:

@ Probability distributions ~~ Stochastic Problems
Ex: Probability(travel duration on section 18 = 42) = 0.4, ...

@ Real-time Data revealed when realising tours ~~ Online Problems
Ex: Actual travel duration on section 18 = 58

@ Data which depends on time ~~ Time-Dependent Problems
Ex: Travel duration at 8:00 = 42; Travel duration at 8:15 = 47; ...

7/85

Prescriptive Data Analytics

e What kind of Data can we exploit?

8/85

Context of this work

ASTRAL project [2014-2017]:
@ Funded by IMU LabEx
@ Partners: LICIT (IFSTTAR), LIRIS, and Métropole de Lyon

@ Goal: Design predictive models for traffic forecasting in city centres

PhD thesis of Julien Salotti (defended in 2019):
@ Co-supervised with R. Billot, N.-E. El Faouzzi, and S. Fenet

@ Contributions:

e Experimental evaluation of predictive models
e Integration of causal information in predictive models

9/85

How to measure traffic conditions?

Spatio-temporal trajectories coming from the use of applications:

~
T S
@ Examples: GPS, Mobile phone %
communications with cellular
networks /
@ Cons: Privacy issues, Spatial errors,

Representativity issues, Property
issues, ...

(Image from Romain Billot)

Electro-magnetic sensors:
@ Physical detection of vehicles

@ Cons: Incomplete spatial coverage

10/85

Data coming from electro-magnetic sensors

Dataset provided by Lyon Metropole:
@ 634 sensors
@ Two measures every 6 minutes:

e Flow: Nb of vehicles per time period
e Density: Nb of vehicles per road
segment

Fundamental diagram:
Estimate speed given flow and density:

@ Fluid traffic: flow increases when
density increases

@ Congested traffic: flow decreases
when density increases
Reference:

Buisson and Lesort (2010): Comprendre le trafic
routier : Méthodes et calculs

Zone; Zone
~ del de
trafic! trafic
fluide! congestionné

Concentration

-
>

Point
critique

Zone
de trafic
congestionné

critique '

\
| Zonel zone
delde

Vitesse du flot

trafic tafic
fluide | congestionné

|
>
Débit Concentration

https://www.researchgate.net/profile/Christine-Buisson/publication/312063695_Comprendre_le_trafic_routier_Methodes_et_calculs/links/5893590292851c545748c68b/Comprendre-le-trafic-routier-Methodes-et-calculs.pdf
https://www.researchgate.net/profile/Christine-Buisson/publication/312063695_Comprendre_le_trafic_routier_Methodes_et_calculs/links/5893590292851c545748c68b/Comprendre-le-trafic-routier-Methodes-et-calculs.pdf

@ Flow measured by sensors 1 (top) and 27 (bottom):

Monday 01/14/2013 Wednesday 01/16/2013 Friday 01/18/2013 Sunday 01/20/2013
1 "
LN A I E 100
1 b | - ﬂf ‘M - /“ M & Iy
W O W | e ATAS |

j”“vww

WM |
v M :

A

o
2 Mgyt)

@ Density measured by sensors 1 (top) and 27 (bottom):

Monday 01/14/2013

Wednesday 01/16/2013

Friday 01/18/2013

Sunday 01/20/2013

/wa L/’M

| bl |

b |

o

| :
| MWM L

T

Predictive models: short term predictions (less than 1 hour)

Compared approaches:
@ Univariate (U) vs Multivariate (M)
@ Variable selection (S)

@ Linear (L) vs Non Linear (NL)

Method L NL U M S

ARIMA X X

VAR X X

LASSO X X
Reference:

Mean Absolute Scaled
Error (MASE) :

Method
® Lasso
® VAR

® ARIMA

I
)

MASE (for Lyon dataset)
o o
e © o

I
HN

o
3

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in

urban and suburban context

J

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:

@ Univariate (U) vs Multivariate (M)

@ Variable selection (S)

@ Linear (L) vs Non Linear (NL)

Method L NL U M

ARIMA X
VAR X
LASSO X

X

KNN-uni
KNN-multi
kNN-Lasso
kNN-TigSB

X X X X

Reference:

Mean Absolute Scaled
Error (MASE) :

13
Method

KNN-Multi

KNN-Lasso
KNN-TigSB
KNN-Uni

12

11

1.0

0.9

08 ‘7"—'.__.__-.

0.7

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in

urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:

@ Univariate (U) vs Multivariate (M)

@ Variable selection (S)

@ Linear (L) vs Non Linear (NL)

Method L NL U M S

ARIMA X
VAR X
LASSO X

X

KNN-uni
KNN-multi
kNN-Lasso
kNN-TigSB

SVR-RBF-uni
SVR-RBF-multi
SVR-RBF-Lasso

X X X|[X X X X

Reference:

Mean Absolute Scaled
Error (MASE) :

13
Method

1.2 ® SVR-RBF-Lasso
® SVR-RBF-Multi
11 ® SVR-RBF-Uni

1.0
0.9
0.8

0.7

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in

urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Compared approaches:

@ Univariate (U) vs Multivariate (M)

@ Variable selection (S)

@ Linear (L) vs Non Linear (NL)

Method L NL U M S

ARIMA X
VAR X
LASSO X

X

KNN-uni
KNN-multi
kNN-Lasso
kNN-TigSB

SVR-RBF-uni
SVR-RBF-multi
SVR-RBF-Lasso

X X X|[X X X X

Reference:

Mean Absolute Scaled
Error (MASE) :

13

12

11

1.0

0.9

0.8

0.7

Method
KNN-Multi
SVR-RBF-Lasso
Lasso
SVR-RBF-Uni

Salotti, Fenet, Billot, El Faouzi, Solnon (2018): Comparison of traffic forecasting methods in

urban and suburban context

13/85

https://hal.archives-ouvertes.fr/hal-01895136/document
https://hal.archives-ouvertes.fr/hal-01895136/document

Predictive models: short term predictions (less than 1 hour)

Examples of forecasting (with KNN-multi):

Débit

Prévision & 6 minutes

—— prévision
—— observation

Temps (une journée)

Débit

Prévision a 30 minutes

—— prévision
—— observation

Temps (une journée)

14/85

Predictive models: long term predictions

Clustering of days for each sensor:
@ Group days with similar time series
@ May be done by exploiting knowledge or automatically

Build a representative time series for each cluster:

For each time step, search for a representative value
~+ For example, the median

Example: Median flow (blue) over 20 days (green) for two sensors

w00

15/85

Representation of predictive models for temporal series

m Mesure

Temporal serie = one measure per time step (e.g., 6 minutes):

~~ Models = one prevision per time step

Valeur

—Fonction continue

Representation with piecewise

linear functions:

Valeur

Temps

Representation with piecewise
constant functions:

Valeur

Temps

16/85

How to exploit these predictions to optimise delivery tours?

When preparing the tour (the day before):
@ Minimize tour durations by exploiting speed predictions
@ Take into account the fact that speed is not constant through the day

~ Optimisation with Time-Dependent (TD) Data

While performing the delivery tour:

@ Adapt the tour when observed events are different from predicted ones
(unexpected events)

@ Anticipate on likely events by exploiting statistics on past events

~+ Optimisation with Uncertain Data

17/85

Prescriptive Data Analytics

e Optimisation with Time-Dependent Data

18/85

Context of this work

PhD thesis of Penélope Aguiar Melgarejo (defended in 2016):
@ Funded by IBM and co-supervised with Philippe Laborie (IBM)

@ Algorithms for optimizing with Time-Dependent Data

e Computation of the duration of a path
o Computation of shortest paths
@ Solve the TD-ATSP with Constraint Programming (CP)

Post-doc of Omar Rifki (2018/2019):
@ Funded by IMU and co-supervised with Nicolas Chiabaut (LICIT)

@ Experimental evaluation on realistic datasets
~- Is it worth exploiting Time Dependent Data?

PhD thesis of romain Fontaine (started in 2020):
@ Funded by “enjeu transport” and co-supervised with Jilles S. Dibangoye
@ Algorithms for solving Time-Dependent VRPs

Adv.: New PhD starting in 2023 ~~ Tell me if you are interested! Jn
19/85

Definition of the problem

Input Data:
@ A set S of delivery points and a warehouse v,
@ A starttime f

@ For each road segment (/,j) and each time ¢:
d(i,j,t) = travel time from i to j when leaving / at time ¢

Output:

A sequence of road segments that:
@ Starts from vy, visits each point of S, and returns to vy
@ Minimises the arrival time when leaving v, at {

Solution process in two steps:

@ Compute quickest paths for each possible start time
~» TD cost function for each couple of delivery points

© Solve the TD-ATSP

20/85

1

© 0O N O o B~ WN

o

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
Function Dijkstra-TD(g, d, ty, Sp)
for each vertex s; do h[sj| + +oo;
h[so] < fo; Put all vertices of g in a priority queue F
while F is not empty do

remove from F the vertex s; s.t. h[s;] is minimal

for each vertex s; € succ(s;) do

if h[si] + d(s, Sj, hlsi]) < h[Sj] then
L hls;j] < h[si] + d(si, s, h[si])
update F

return h

21/85

1

© 0O N O o B~ WN

o

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
Function Dijkstra-TD(g, d, ty, Sp)
for each vertex s; do h[sj| + +oo;
h[so] < fo; Put all vertices of g in a priority queue F
while F is not empty do

remove from F the vertex s; s.t. h[s;] is minimal

for each vertex s; € succ(s;) do

if h[si] + d(s, Sj, hlsi]) < h[Sj] then
L h[Sj] — h[S,‘] + d(S,‘7 Sj, h[S,‘])
update F

return h

Condition for Dijkstra to be correct?J

21/85

1

© 0O N O o B~ WN

o

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
Function Dijkstra-TD(g, d, ty, Sp)
for each vertex s; do h[sj| + +oo;
h[so] < fo; Put all vertices of g in a priority queue F
while F is not empty do

remove from F the vertex s; s.t. h[s;] is minimal

for each vertex s; € succ(s;) do

if h[si] + d(s, Sj, hlsi]) < h[Sj] then
L h[Sj] — h[S,‘] + d(S,‘7 Sj, h[S,'])
update F

return h

Condition for Dijkstra to be correct?

@ Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

21/85

1

© 0O N O o B~ WN

o

Computation of quickest paths with TD data

Extension of Dijkstra to TD data:
Function Dijkstra-TD(g, d, ty, Sp)
for each vertex s; do h[sj| + +oo;
h[so] < fo; Put all vertices of g in a priority queue F
while F is not empty do

remove from F the vertex s; s.t. h[s;] is minimal

for each vertex s; € succ(s;) do

if h[si] + d(s, Sj, hlsi]) < h[Sj] then
L h[Sj] — h[S,‘] + d(S,‘7 Sj, h[S,'])
update F

return h

Condition for Dijkstra to be correct?

@ Every subpath of an optimal path
must be optimal

Is the condition satisfied when
costs are time-dependent?

Computation of quickest paths with TD data

To ensure the correctness of Dijkstra, d must satisfy the FIFO property:

@ Ifty <bthenty +d(i,j, ty) <b+d(ijt)
~+ We cannot arrive sooner if we leave later

@ If dis not FIFO, then searching for shortest paths is NP-hard

Example of non FIFO function: How to make it FIFO?

To + Yo |,
.

Vg

References:

@ Kaufman, Smith (1993): Fastest paths in time-dependent networks for intelligent vehicle-highway systems

@ Ichoua, Gendreau, Potvin (2003): Vehicle dispatching with time-dependent travel times

99/85

https://www.tandfonline.com/doi/abs/10.1080/10248079308903779
https://www.sciencedirect.com/science/article/abs/pii/S0377221702001479

Non Exhaustive Literature Review on the TD-TSP

Problem Constraints Solving approach
Authors (Year) TSP VRP T™W Q Exact Heuristic
Malandraki & Daskin (1992) v v v v ILP
Malandraki & Dial (1996) v DP RDP
Schneider (2002) v LS
Ichoua et al (2003) v v LS
Fleischmann et al (2004) v v Greedy
Haghani & Jung (2005) v v v GA
Eglese et al (2006) v v v LS
Van Woensel et al (2008) v v LS
Donati et al (2008) v v v ACO
Ehmke et al (2012) v v Greedy
Kanoh & Ochiai (2012) v ACO
Figliozzi (2012) v v v Greedy
Cordeau et al (2014) v ILP
Melgarejo et al (2015) v CP
Montero et al (2017) v v ILP
Vu et al (2018) v v ILP
Arigliano et al (2019) v v ILP
Sun et al (2020) v v v LS
Vu et al (2020) v v ILP
Rifki et al (2020) v v v v DP
Fontaine et al (2022) v v DP

721/85

https://pubsonline.informs.org/doi/10.1287/trsc.26.3.185
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/S0378437102010786
https://www.sciencedirect.com/science/article/abs/pii/S0377221702001479
https://www.jstor.org/stable/25769188
https://www.sciencedirect.com/science/article/abs/pii/S0305054804000887
https://www.sciencedirect.com/science/article/abs/pii/S0305054805001243
https://www.sciencedirect.com/science/article/abs/pii/S0377221707003116
https://www.sciencedirect.com/science/article/abs/pii/S0377221706006345
https://www.sciencedirect.com/science/article/abs/pii/S1877750312000087
https://link.springer.com/chapter/10.1007/978-3-642-28765-7_4
https://doi.org/10.1016/j.tre.2011.11.006
https://pubsonline.informs.org/doi/10.1287/trsc.1120.0449
https://hal.archives-ouvertes.fr/hal-01163394/document
https://www.sciencedirect.com/science/article/abs/pii/S0305054817301612
https://optimization-online.org/2018/05/6640/
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S1366554519303734
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://hal.archives-ouvertes.fr/hal-02934134/document
https://hal.archives-ouvertes.fr/hal-03865036/document

Dynamic Programming (DP) for the TSP

Bellman equations for a set V of points (with warehouse=0):

Vie V,¥S C V\ {0}: let p(i, S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

@ If S=0,then p(i,S) = d(0,)

@ Otherwise p(i, S) = minjcsp(j, S\ {j}) +d(j.i) ____
P PGS\ D

/

@;’,x'poz,S\{w

N
N

- p(]k’S\{.]k})

~~ Computation of p(0, V \ {0}) in O(]V|? - 2I])

Reference:

Held, Karp (1962): A dynamic programming approach to sequencing
problems

https://epubs.siam.org/doi/10.1137/0110015
https://epubs.siam.org/doi/10.1137/0110015

lllustration on a small example

@

start from A

/4\

B, 0 C,0 D,(

25/85

lllustration on a small example

@

start from A

/ 2| \
B0 Cco D0
2

1

25/85

lllustration on a small example

@

start from A

Bq)/ i:lm \D(Z)
NN

C,{B} D,{B} B, {C} D,{¢} B.{D} C,{D}

25/85

lllustration on a small example

@

start from A

Bq)/ i:lm \D(Z)
NN

C./B} D,{B} B./C} D,{C} B, D} C,!D}
o) 12 7 4 6

12

25/85

lllustration on a small example

2

A B

1

2 3

0

C 5 D
start from A
/ 5 | \
B0 Cco D0

SN N N

C./B} D.(B} B.IC) D,{C} B, D} C,!D}

i S &5 /\ y €
%))

D,{B, C} C,{B, D} B.{C, D}

25/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 C0 D 0
L/ 2\ @ O/ 2\ s o/ 1 s
C.1B} D!B} B.IC} D,fC} B,{D} C,{D}
12 RN 12 QO 6
) 5 /\ /

D,{R.C} C,{R.D} B,{r.D}

25/85

lllustration on a small example

A 2 B
1
2 3
0
Cc D
> start from A
/ 2| \
B0 Do
N 7 \ N
C.1B} D,{B} B.IC} D,{C} B,{D} C,{D}
12 RN 5 12 /\ y 6
& 5

D,{R.C} C,{R.D} B.{".D}

25/85

lllustration on a small example

A 2 B
1
2 3
0
Cc D
> start from A
/ 2| \
B0 Do
N 7 \ N
C.1B} D,{B} B.IC} D,{C} B,{D} C,{D}
12 RN 5 12 /\ y 6
& 5

D,{R.C} C,{R.D} B.{".D}

25/85

DP for the TSP

Bellman equations for a set V of points (with warehouse=0):

Vie V,¥vS C V\ {0}: let p(i, S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

@ If S=0,then p(i,S) = d(0,/)
@ Otherwise p(i, S) = minjes p(j, S\{j}) + d(j,)

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

Vie V,¥vS C V\ {0}: let p(i, S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

@ If S= 0, then p(i,S) = d(0,, f)
@ Otherwise p(i, S) = minjes p(j; S\{j}) + d(/. 7. p(Jj, S\ {/}))

References:

@ Malandraki, Dial (1996): A restricted dynamic programming heuristic
algorithm for the TD-TSP

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

DP for the TD-TSP

Bellman equations for a set V of points (with warehouse=0):

Vie V,¥vS C V\ {0}: let p(i, S) denote the length of the shortest path from 0
to i that visits each point of S exactly once

@ If S= 0, then p(i,S) = d(0,, f)
@ Otherwise p(i, S) = minjes p(j, S\{j}) + d(j, /)

Anytime Column Search (ACS):

Iterated Depth-First Search in the state-space
~ Anytime and exact approach

References:

@ Malandraki, Dial (1996): A restricted dynamic programming heuristic
algorithm for the TD-TSP

@ Vadlamudi, Gaurav, Aine, Chakrabarti (2012): Anytime Column Search

26/85

https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://www.sciencedirect.com/science/article/abs/pii/0377221794002991
https://link.springer.com/chapter/10.1007/978-3-642-35101-3_22

lllustration on a small example

@

start from A

/4\

B, 0 C,0 D,(

27/85

lllustration on a small example

@

start from A

/ 2| \
B0 Cco D0
2

1

27/85

lllustration on a small example

@

start from A

27/85

lllustration on a small example

@

start from A

27/85

lllustration on a small example

2

A B

1

2 3

0

C 5 D
start from A
/ 2| \
B0 Cco D0
2 2 V 1 Y

27/85

lllustration on a small example

2

A B

1

2 3

0

C 5 D
start from A
/ 2| \
B0 Cco D0
2 2 V 1 Y

27/85

lllustration on a small example

2

A B

1

2 3

0

C 5 D
start from A
/ 2| \
B0 Cco D0
2 2 V 1 Y

C,{R.D}
14
2]

A {B,C,D}

27/85

lllustration on a small example

2

A B

1

2 3

0

C 5 D
start from A
/ 2| \
B0 Cco D0
2 2 V 1 Y

C,{R.D}
14
2]

A {B C,D}
16

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 Cco D0
N 2 RN
C.{B} D, {B} B, (D} C,{D}
4 6
%
C,{R.D}
14

.
z
I

A {B C,D}
16

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 Cco D0
X 2 N
C./B} D, {B} B,{D} C.{D}
12 5 4 6

C,{R.D}
14
2]

A {B C,D}
16

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 C0 D 0
L/ 2\ @ 2 o/ 1 s
C.1B} D,{B} B,{D} C,{D}
12 o) 4 6
X %
C,{R.D}
14

2]
A {B C,D}
16

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 C0 D 0
L/ 2\ @ 2 o/ 1 s
C.1B} D,!{B} B,{D} C,{D}
12 o) 4 6
X %
C,{R.D}
10

2]
A {B C,D}
16

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 C0 D 0
L/ 2\ @ 2 o/ 1 s
C.1B} D,!{B} B,{D} C,{D}
12 o) 4 6
X %
C,{R.D}
10

2]
A {B C,D}
12

27/85

lllustration on a small example

2
A B
1
2 3
0
C 5 D
start from A
/ 2| \
B0 C0 D 0
L/ 2\ @ 2 o/ 1 s
C.1B} D,!{B} B,{D} C,{D}
12 o) 4 6
X %
C,{R.D}
10

2]
A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 co D0
SN SN N
C.1B} D,iB} B,{C} D,{C} B,{D} C,{D}
12 5 4 6
T s

C,{R.D}
10
2]

A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 co D0
SN SN N
C.1B} D,iB} B.IC} D,{C} B!D} C,{D}
12 5 12 6
T /

C,{R.D}
10
2]

A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 co D0
SN SN N
C.1B} D,iB} B.IC} D,fC} B,{D} C,{D}
12 5 12 7 4 6

C,{R.D} B,{C,D}
10
2]
A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 co D0
SN SN N
C.1B} D,iB} B.IC} D,fC} B,{D} C,{D}
12 5 12 7 4 6

C,{R.D} B,{r.D}
10 16
2]
A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 Cco D0
SN SN N
C.1B} D,iB} B.IC} D,fC} B,{D} C,{D}
12 5 12 7 4 6

X A0 3 y

C,{R.D} B,{r.D}
10 16
2]
A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 Cco D0
SN SN N
C.1B} D,iB} B.IC} D,fC} B,{D} C,{D}
12 5 12 7 4 6

X A0 3 y

C,{R.D} B,{r.D}
10 10
2]
A {B C,D}
12

27/85

lllustration on a small example

A 2 B
1
2 3
0
C D
S start from A
/ 2| \

B0 Cco D0
SN SN N
C.1B} D,iB} B.IC} D,fC} B,{D} C,{D}
12 5 12 7 4 6

X A0 3 y

C.{R.D}
10

. /
“1

A {B C,D}
12

B,{r.D}
10

27/85

Anytime and Exact DP-based approach for the
TD-TSPTW (FON22)

Combine ACS with:
@ Local search to converge faster towards better solutions

@ Bounding and time window propagation to prune the state space

Reference:

Fontaine, Dibangoye, Solnon (2022): Exact and Anytime approach for solving
the TD-TSP-TW

v

28/85

https://hal.archives-ouvertes.fr/hal-03865036/document
https://hal.archives-ouvertes.fr/hal-03865036/document

Recent ILP approaches for the TD-TSP with Time Windows

Exploitation of common congestion patterns (ARI19):

@ Computation of bounds by considering suitable-defined constant costs
~+ the more arcs share a same congestion pattern, the tighter the bound

@ State-of-the-art results on instances with common congestion patterns

Dynamic Discretization Discovery (VU20):

@ Dynamic time step refinement to strengthen time-indexed ILP models
@ State-of-the-art results on instances with very tight time windows

References:

@ Arigliano, Ghiani, Grieco, Guerriero, Plana (2019): Time-dependent
asymmetric traveling salesman problem with time windows: Properties
and an exact algorithm

@ Vu, Hewitt, Boland, Savelsbergh (2020): Dynamic Discretization

Discovery for Solving the Time-Dependent Traveling Salesman Problem
with Time Windows

20/85

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911
https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911

Comparison of ARI19 (ILP) with Fon22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

@ A is used to control congestion pattern similarity
~+ The closer A to 1, the more common congestion patterns

@ (s used to control time window tightness
~+ The closer 3 to 1, the tighter the time window

Percentage of solved instances within 1h:
Pattern B, Pattern B,
A=70 A=.80 A=90 A=.95 A-.98|A=70 A=.80 A=.90 A-.95 A-.98
ARI19 3=0 23 43 67 93 100 0 7 23 60 100
B=25| 33 53 90 100 100 7 30 63 90 97
B=.5 17 23 70 87 97 7 13 47 67 97
B=1 80 73 83 87 100 73 60 67 77 77

@ ARI19is sensitive to 5 andto A

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827

Comparison of ARI19 (ILP) with FON22 (DP)

Randomly generated instances of [Arigliano et al 2019] with n = 31:

@ A is used to control congestion pattern similarity
~+ The closer A to 1, the more common congestion patterns

@ (s used to control time window tightness
~+ The closer 3 to 1, the tighter the time window

Percentage of solved instances within 1h (on different computers...):
Pattern B, Pattern B,
A=70 A=80 A=.90 A=.95 A-.98|A=70 A-=.80 A=.90 A=.95 A-.98
0 23 43 67 93 100 0 7 23 60 100
=25 33 53 90 100 100 7 30 63 90 97
5 17 23 70 87 97 7 13 47 67 97
80 73 83 87 100 73 60 67 77 77

1
0 67 67 67 67 67 83 80 70 70 70
25| 100 100 100 100 100 | 100 100 100 100 100
5| 100 100 100 100 100 | 100 100 100 100 100
=1 100 100 100 100 100 | 100 100 100 100 100

B
B
B
FON22 p=
B
B
B

@ ARI19is sensitive to 5 andto A
@ FoN22 is sensitive to 3, but not to A

20/85

https://www.sciencedirect.com/science/article/abs/pii/S0166218X18304827

Comparison of VU20 (ILP) with FON22 (DP)

Randomly generated instances of [Vu et al 2020]
@ Same model as [Arigliano et al 2019]
@ Instances with very tight time windows only (5 = 1)
@ n e {60,80,100} (240 instances per value of n)

Solving times (on different computers...):

n=60 n=80 n=100
g 1 [] ’
g 10 5 0|3 3 T
= 100 4 4 { =
074 T E 1
T T T T
FON22 VU20 FON22 VU20 FON22 VU20
(240) (239) (240) (235) (240) (227)

@ FON22 solves all instances within 1h
@ VU20 fails on 19 instances and is more than 1 order slower

y
71/85

https://pubsonline.informs.org/doi/10.1287/trsc.2019.0911

Is the TD-TSP-TW harder than the TSP-TW?

Solving times of FON22 with TD costs (x) and constant costs (y):

B=0.25 B=0.5 B=1.0
] o+ =21 + '!
104 4 nem + 3
+ n=41 ++
f
1024 # %# Ry q
§f 3 W
o » Ry +a3
£ £ ¥ iad
S 1014 t’ﬁf & + H
= HrE b
£ 4 . ‘? % Qb+
: S ek
& 100 . % A :‘w&
+
E + * wg‘ %
& + £
P s £ 7
¥
N 4 L
1072 % ¥ ﬁ - + *
-
£
1073
107 102 107! 10° 10! 102 10° 107 102 107! 10° 10! 102 10° 102 102 107 10° 10! 102 10°

TDTSPTW Solving time

~ Yes, much harder for most instances!

Is it worth spending much more time?

To answer this question, we must consider realistic TD cost functions!

29/85

Construction of a realistic benchmark

Utilisation of a simulator (SymuVia, LICIT) of the Lyon road network:

@ Different levels of sensor coverage:
o Dy, real sensor positions (cover=7%)
e D, with o € {10,20,...,100}: cover=0% (evenly distributed)
~+ Values for uncovered road segments are interpolated
@ Different time-step length / € {6,12,24,60, 720} (/ = 720 < static case))

Rifki, Chiabaut, Solnon: On the impact of spatio-temporal granularity of traffic conditions on the
quality of pickup and delivery optimal tours

Reference: }

22/85

https://hal.archives-ouvertes.fr/hal-02934134/document
https://hal.archives-ouvertes.fr/hal-02934134/document

How to compare tours optimised on different Data?
~ lllustration on an artificial example

[1st time-step of 6mn] [2nd time-step of 6mn]

@ Best: T =(0,3,1,2,0)
@ Arrival time =10

24/85

How to compare tours optimised on different Data?
~ lllustration on an artificial example

[1st time-step of 6mn] [2nd time-step of 6mn] 1st time-step of 12mn

@ Best: T =(0,3,1,2,0) @ 7'2=10,1,2,3,0)
@ Arrival time =10 @ Arrival time = 14

24/85

How to compare tours optimised on different Data?
~ lllustration on an artificial example

[1st time-step of 6mn] [2nd time-step of 6mn] 1st time-step of 12mn

@ Best: 7°=(0,3,1,2,0) @ 7'2=(0,1,2,3,0) @ 7720-(0,2,3,1,0)
@ Arrival time = 10 @ Arrival time = 14 @ Arrival time = 14

24/85

How to compare tours optimised on different Data?
~ lllustration on an artificial example

[1st time-step of 6mn] [2nd time-step of 6mn] 1st time-step of 12mn

@ Best: T =(0,3,1,2,0) @ 7'2=10,1,2,3,0) @ 7720 =(0,2,3,1,0)
@ Arrival time = 10 @ Arrival time = 14 @ Arrival time = 14
@ Realistic travel time rtt = 10 @ rit=17 @ rit =19

Evaluate all tours with a same cost function

Use the cost function which is the closest to real conditions
~+ Realistic travel time (rtt) computed with / = 6mn and ¢ = 100%

24/85

Question 1: Can we find better tours when using TD Data?

Performance measure:

Gap between 7720 and T' with / € {6, 12,24, 60} = (T

() —m(T) | 100

Results when o = 100%:

20%

10%

0%

Gap

-10%

-20%

SI%
.

Time—step length (in minutes)

Answer to Question 1:

@ When o = 100%: Yes, and the smaller the time step the larger the gain

25/85

Question 1: Can we find better tours when using TD Data?

Performance measure:
Gap between 772 and T’ with / € {6,12,24,60} = ﬂw x 100

rit(T'
Results when o = 100%: Results when o = Lyon:
n= 30 n=30
20% 20%
T
0% 10%
1
[=9
& o |] 3 0% . 3
-10% ~10%
-20% -20%
6 2 24 60 6 12 24 60
Time—step length (in minutes) Time-step length (in minutes)
v

Answer to Question 1:
@ When o = 100%: Yes, and the smaller the time step the larger the gain
@ When o = Lyon: No

Question 2: What is the impact of / and o on tour quality?

Performance measure:
(l,o)y_ (6,100)
Gap between T(2) and 7(6:100) _ (T rﬁ()T(e’:?gg)—)) % 100 J
n=10 n=20 n=30
20

static .

60 15

24 10

12

6 5

1020 30405060 708090100 1020 304050 60 70 80 90100 1020 3040 50 60 70 80 90100
sigma [%]
Answer to Question 2:
@ The impact of / and ¢ increases when increasing n

@ It is worth exploiting TD data when o = 100%: Tours computed with

| =720mn are 8% as long as those computed with / = 6mn when n = 30
@ We'd better use constant data when o < 50%

~ Interpolation doesn’t allow to compute good approximations of speed

26/85

Question 3: Does this impact change when adding constraints?

n=10 n =20 n =30
20
static
&0 15
24 10 7
12
8 6 5
E]
£ 0
E 20
c .
= static
& 60 15
2
e 24 10 §
£ 12
k=] 5
® 6
%5 0
< 20
k) .
g static 15 5
- 60 h
24 0 7z
12 5 o
6
o

1020 30 40 50 60 70 80 90100 1020 304050607080 90100 1020 30405060 708090100

sigma [%]

@ P1=TD-ATSP
@ P2 =TD-PDP (TD-ATSP + precedence constraints)
@ P3 = TD-DARP (TD-PDP + capacity constraints with capacity g, = 2)

27/85

Question 3 (continued): What if we change the capacity q,?

. qy=2 qy =4 q,=8

% 20
@ .

dIJ @ static 15
EZ2 60
B2 24 10
s E
Ze 12 5
< 6

2 0
2 1020 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100

sigma [%]

Answer to question 3:

@ When adding precedence or capacity constraints, the interest of
exploiting TD Data decreases because these constraints decrease the

number of valid tours
@ The tighter the constraints, the less interesting TD Data are

29/85

Question 4: Impact of / and o on time window satisfaction?

Performance measure:

Percentage of tours for which TW are still satisfied when evaluating them with
I=6and o =100%

v

Results for TD-TW-ATSP when n = 40 and the number of TW < {2,4,6}:

Width = 120mn Width = 60mn Width = 40mn
100
static 80
60 60
24 20
12
6 . 20
0
1020 30405060 70 80 90100 10 20 3040 50 60 70 80 90100 1020 304050 60 70 80 90100

sigma [%]
@ When TWs are very large (120mn), all tours are still feasible
except when using constant costs
@ When TWs are very tight (40mn), all tours are infeasible

@ Between these extreme cases, it is worth exploiting TD data
even when o = 10%

20/85

What about the TD-DARP-TW?

Percentage of feasible tours:
(n =60, g =6, and TW length = 60)

static 80
60 60
24

12
6 20

1020 30405060 70 80 90100

@ Feasibility is decreased when increasing /, even when o < 100%
~ Tours optimised with constant costs are nearly always infeasible

@ When | = 6, decreasing o decreases feasibility...
...But when / > 12, decreasing ¢ increases feasibility

40/85

What about the TD-DARP-TW?

Percentage of feasible tours: Shortest paths durations:
(n =60, g =6, and TW length = 60) (% wrt durations when / = 6 and o = 100)
100 ati 30
static 80 static %é
60 60 &0 10
24 20 24 2
12 12 5
6 20 -10
6 -15
0 20
1020 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100

@ Feasibility is decreased when increasing /, even when o < 100%
~ Tours optimised with constant costs are nearly always infeasible

@ When | = 6, decreasing o decreases feasibility...
...But when / > 12, decreasing ¢ increases feasibility

@ This may be explained by shortest path durations

40/85

Conclusion: Two main challenges for TD routing problems

Scalability:

TD problems are much more difficult than constant ones
~» Some instances with 40 points to visit are not solved within 1h

Reliability:
Getting reliable TD cost functions is not an easy task!

@ The number of sensors has a strong impact on reliability
~~ What about their position?

@ Interpolation is not a good predictor for missing values
~+ Can we find better predictors?

@ So far, we have assumed that we have perfect predictive models
~ |s it really the case?

41/85

Conclusion: Is it worth exploiting time-dependent data?

It depends on the goal!

@ If the goal is to reduce tour durations:
~+ Not really if we don’t have perfect TD Data

@ If the goal is to better satisfy time window constraints:
~ Yes, even when only 10% of the road segments have sensors

What about carbon footprint?
@ What is the cost of getting reliable TD Data?

@ Can TD problems ease shared and multi-modal mobility?
~+ Work with social scientists on this question!?

42/85

Prescriptive Data Analytics

0 Optimisation with uncertain data

43/85

Motivations

Optimisation with Data coming from predictive models:

@ A prediction may be wrong
What should we do in this case?

@ Some predictions are more reliable
than others

@ Can we anticipate with respect to
likely events? +Hh

Context of this work:

PhD thesis of Michael Saint Guillain defended in 2019 (co-tutelle with
Louvain-la-neuve, Belgium, co-supervised with Yves Deville)

44/85

Classical optimisation problems

Problems are defined by means of:
@ Input Data
@ Decision variables (X) and their domains (D)
@ Constraints to be satisfied (C)
@ Objective function to optimise (F)

Solution:

Assign values to variables so that all constraints are satisfied and the
objective function is optimal

What can we do when observed Data +# input Data?
@ Recompute a new solution wrt new Data

@ Drawbacks:

e Re-computation is time consuming
e The new solution may be much worse than the one computed by
anticipating wrt likely events

45/85

Stochastic Optimisation Problems

Stochastic problems are defined by means of:
@ Input Data known with certainty
@ Uncertain input Data = Random variables
@ Decision variables (X) and their domains (D)
@ Constraints to be satisfied (C)
@ Objective function to optimise (F)

Example: VRP with stochastic demands

@ Certain data: points to deliver, distances, vehicle
capacity
@ Uncertain data: demands
@ Probability distributions of demands:
o p(ra=2)=p(rg=2)=p(rp=1)=1
o p(re=1)=34,p(rc =8)=%.p(rc =9) =

w|—=

Robust solutions for stochastic optimisation problems

Ensure the feasibility of the solution wrt some given probability p:

Goal = Assign values to variables so that the objective function is optimal and
the probability that constraints are satisfied is greater than p

Example: Robust solutions for the VRP with stochastic demands

Robust solution wrt p =1 : Robust solution wrt p = % :

Stochastic Constraint Programming [Walsh 2009, Piette 2016]
Used for General Game Playing: WoodStock winner of IGGPC 2016

47/85

https://arxiv.org/pdf/0903.1152.pdf
https://www.cril.univ-artois.fr/en/phds/e-piette/

Flexible solutions for stochastic optimisation problems

Optimise the expected cost of adapted solutions:
@ Define an adaptation procedure to be applied when random variables
are realised = Simple (and fast) procedure

@ Before the beginning of random variable realisations (offline) :
Compute an a priori solution = Assign values that optimise the
expectation of the objective function wrt the adaptation procedure

@ Each time a random variable is realised (online) :
~+ Apply the adaptation procedure

Ex.: Adaptation procedure for the VRP with stochastic demands
@ Go back to the depot if current load + next demand > k

A priori Solution for k = 11 : Adapted solution if rc =80r9:

Cout=12 A8/85

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:

@ p(ra=2)= p(I’B—2) p(rp=1) =1
® p(re=1)=1,p(rc=8)=1prc=9)=1

What if we consider the “average” problem (i.e. rc =6)?
Optimal solution: Adaptation if rc=1 Adapt. if rc €{8,9}

@)

Cout=18 n

~+ Expected cost = 191818 — 48 Can we do better?

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:

® p(ra=2)=p(rg=2)=p(rp=1) =1
@ p(rc=1)=3%,p(rc=8)=3%,p(rc =9) =3

Optimisation of the expected cost of adapted solutions:

A priori Solution: Adaptation if re =1 Adapt. if rc€{8,9}
4
3
5 4 3

Cout=12

~+ Expected cost = 121816 — 41 That's better!

Cout=16

49;

Expectation Optimisation vs Average Problem Optimisation

Problem (recall):

Request probability distributions:

@ p(ra=2) =p(rs=2) =p(rp=1) =1
@ p(re=1)=3,p(rc =8)=3,p(rc =9) = §

What if we have an oracle that knows the future?
Optimal sol. if rg = 1 Optimal sol. if rc =8 Optimal sol. if rc =9

Cout=10

~+ Expected cost = 101416 — 40 That's even better, but oracles don't exist!

49;

How to compute the expected cost of an a priori solution
~~ Use Dynamic Programming

Example: Stochastic TSP
@ Uncertain Data = Vertices to visit (some clients may be missing)
@ Stochastic knowledge: Each vertex i is present with probability p(/) and
missing with probability 1 — p(/)
@ A priori solution: Hamiltonian cycle (vo, v1,. .., Va, V)
@ Adaptation: Skip vertices associated with missing clients

Bellman equations to compute the expected cost:
Let e(v;) = expected length of the adaptation of (vj, Vii1,..., Vn, V)
@ If i = n, then e(v;) = d,, ,,
@ Otherwise, e(v;) = > ; 4 Pr(vi, vj) * (dy, v, + €(v)))
e Pr(v;,v;) = proba that v; is present and vj,1, ..., v,_4 are missing
~ Pr(vi,vj) = (1 = p(vig1)) % ...+ (1 = p(Vj-1)) * p(V))
Expectation of an a priori solution = e(vy) computed in O(n?)

Problem: Not always possible to find Bellman’s equations...

50/&5

How to compute the expected cost of an a priori solution
~~ Use Monte Carlo sampling

Expected cost of an a priori solution A=} _¢ Pr(s) - costa(s)

@ Sis the set of all possible scenarios
@ costa(s) = cost of Aadaptedto s

Example: Expectation of the length of a tour for the Stochastic TSP
@ Scenario = subset of vertices (corresponding to present clients)
@ Foreach subsetsC V:
e Probability of s = M;csp(i) * Mie\s(1 — p(i))
@ costa(s) = length of the subcycle of A that only contains nodes of s

Problem: The nhumber of scenarios is exponential

Approximation with Monte-Carlo Sampling:
@ Generate a representative subset of scenarios using probabilities
@ For each sampled scenario, compute the cost of the adapted solution
@ Return the average cost

4
51/85

Computation of an a priori solution with optimal expected cost

Exact approach: Branch & Cut (Integer L-shaped method)
@ Drop some constraints (integrality, subtour elimination, etc)
@ Replace the non-linear obj. function by a lower bounding variable z
@ lterate:

e Solve the current problem
e Add feasibility cuts if dropped constraints are violated
e Add optimality cuts if z < actual expected cost

Meta-Heuristic approaches (most often, local search-based):
@ Generate an initial a priori solution
@ While termination conditions not reached:

e Change the values of some decision var. wrt some heuristics
(£ possible heuristics: greedy, simulated annealing, tabu, etc)

e Evaluate the impact on the expected cost

o Accept or not the changes wrt some meta-heuristics

@ Return the best a priori solution

52/85

Application to Police Patrol Management in Brussel

Description of the problem:
@ Requests are revealed during the day, and must all be accepted
@ Goal: Minimise service time expectation

Historical Data from 2013 to 2017:
~» Evolution of request localisation wrt time

/a . 7 :
_f\ ,“4 g

c
b
4 - 6am 6 - 8am 8 - 10am

Reference:

Saint-Guillain, Paquay, Limbourg: Time-dependent stochastic vehicle routing problem with
random requests: Application to online police patrol management in Brussels

R5

https://www.sciencedirect.com/science/article/abs/pii/S037722172030953X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S037722172030953X?via%3Dihub

Introduction of waiting vertices and waiting times

Example of a priori solution:

8 o+

8

Example of adapted solution:

[i 8 8
68—».{; ®

New algorithms:

@ Dyn. prog. to compute exp. cost in O(n?hq) time and O(nh?q) space
(n = nb of vertices, h = nb of time steps, g = max. capacity)

@ Local Search approach to compute an approximate a priori solution

54/85

Choice of locations by spatial clustering

-\:’.-3 LI
0

-
°

So%uo,
°

55,

85

Results

Average relative gain wrt Wait & Serve strategy:

Nb of waiting locations
50 100 150 | Wait & Serve

3 vehicles | 18.6% 17.0% 19.1% 11.6 mn
4 vehicles | 25.4% 26.2% 28.1% 10.3 mn
6 vehicles | 38.6% 39.3% 38.1% 10.0 mn

Conclusions:
@ Exploiting stochastic knowledge allows to reduce service time
@ Gain increases when increasing the number of vehicles

@ Gain doesn'’t increase with the number of waiting locations

~ Increasing the nb of waiting locations increases the search space size
v

56/85

Prescriptive Data Analytics

e Conclusion

57/85

Conclusion

How to exploit huge amounts of sensed Data?
@ Descriptive analytics to understand
@ Diagnostic analytics to explain
@ Predictive analytics to forecast
@ Prescriptive analytics to optimise

e Time-Dependent optimisation for temporal Data
e Stochastic optimisation for uncertain Data

Where are the challenges?
@ N'P-hard problems for which complete approaches hardly scale

@ Need accurate, reliable, and available Data
~+ Privacy and sustainability issues

@ Citizens must be ready to use these smart services
... or smart services should adapt themselves to citizens!

Hot multidisciplinary research field!

58/85

Prescriptive Data Analytics

o Parenthesis on Constrained Optimization

59/85

Constrained Optimization

Model of a Constrained Optimization Problem (COP):
~ Define (X, D, C, F) with:
@ X = Set of variables (unknowns)

@ D = function which defines the domain D(x;) of every variable x; € X
~ D(x;) = Set of values that may be assigned to x;

@ C = Constraints (relations between variables of X)

@ F: X — R = objective function to optimize

Solution of a problem (X, D, C, F):
Assignment of a value to every variable of X such that:

@ Each variable x; € X is assigned to a value that belongs to D(x;)
@ Every constraint of C is satisfied
@ F is maximized (or minimized)

Remark: A problem may have several different models...

Example: Model for the TSP

Variables: X = {x;; | i,j € V x V,i# j} with D(x;;) = {0,1}
~» Xjj = 1if we travel to j just after /

Constraints:
@ Vi e V, we must visit / once:
Vi e V,ZX,’J = ZXN =1

jev jev
@ VS C V, no subtour:

vScV, Z xij < |S|
(ij)eSx S

Objective function: Minimize > s, s di) * Xi;

Example for thetour0 -3 —+1—-+2—-4 -0

X03 =X31=X12=Xo4=Xa0 =1 J

61/85

Example: Other model for the TSP

Variables: X = {next;, visiti | i € V}
@ D(next)) = V\ {i}
~+ next; = j if the vertex visited after i is j
@ D(visit) =V
~ Visit; = j if the ith visited vertex is j

Constraints:
@ We start from and return back to 0: visity = 0 and nexty;si;,_, =0
@ The next of visiti_1 is visit;: ¥i € V' \ {0}, visit; = nextysi,_,
@ Each vertex is visited once: allDifferent(visit)
@ Each vertex follows a different vertex: allDifferent(next)

Objective function: Minimize } ;_, dj nex J

Example for thetour0 -3 —+1—-2—-54—-0

next [3]2[4[1]0] visit [0]3[1]2]4] L
0 1 2 3 4 0 1 2 3 4 60/8E

Some particular cases

No constraint:
~» Optimization problem

No objective function:
~ Constraint Satisfaction Problem (CSP)

Domains are discrete (enumerable)
~» Combinatorial problem

F linear, D = R and C = linear inequalities
~ Linear Programming (LP)

Flinear, D = Z and C = linear inequalities
~ Integer Linear Programming (ILP)

F linear, D = {0,1} and C = linear inequalities
~+ Knapsack problem

F quadratic, D = R and C = linear inequalities
~+ Quadratic Problem

63/85

Complexity

Some particular cases have polynomial complexities:

@ Linear programming with continuous domains
@ 2-SAT

@ Assignment problems

@ Shortest path problems

o ...

They are most often NP-hard:

@ |LP, Knapsack

@ SAT, 3-SAT, Planar-3-SAT, ...

@ Many graph problems:
Coloring, TSP, max Clique, ...

@ CSP with finite domains

o ...

In some cases they are undecidable:

@ Diophantine equations
@ CSP with non finite domains
o ...

64/85

How to solve NP-hard problems?

@ Some instances of NP-hard problems may be easy to solve
~ far from phase transition, landscapes with few local optima, ...

@ Some NP-hard problems become polynomial when adding constraints

@ Some NP-hard problems may be approximated in polynomial time
(with bounds on errors)

@ Otherwise, we have to be intelligent when exploring the search space

e Heuristic approaches:

~» Avoid explosion by ignoring some parts of the search space
o Complete approaches:

~ Prevent explosion by structuring and filtering search space

65/85

Heuristic approaches

Exploration guided by (meta-)heuristics
@ Intensify search around the most promising areas
@ Diversify search to discover new areas

Two kinds of heuristic approaches
@ Perturbative: Modify existing combinations
e Ex: Local search (LS), Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), ...
@ Constructive: Build new combinations from scratch
e Ex: Ant Colony Optimization (ACO), Estimation of Distribution
Algorithms (EDA), ...

Example of local search for the 8-queen problem:

m m | - m m | o (] .

] | o u 0 u 0

2 0 4.

| | 1 u 0 L_IEH 0

| (W [0 n I o | /M 1
% 4 | M m o u H o

2 = 44 | m o

|} 2 | 0 [T 0

A
12 22%.2 220 % 0111222412 & 012121111 =«

66/85

Complete approaches

Ad hoc approaches
@ Branch & Bound, Branch & Cut, Branch & Price, ...
@ Dynamic programming
o ..

Generic approaches: Problem ~+ Model ~ Generic solver

@ MILP (Mixed Integer Linear Programming)
~» Numerical variables; Constraints = Linear inequalities

@ SAT (satisfiability of Boolean formulae)
~ Boolean variables; Constraints = Logical clauses

@ CP (Constraint Programming)
~» Any kind of variables and constraints

Why using CP?
@ Ease of modelling
@ Efficiency

67/85

Why using CP instead of SAT?

Magic Square

¢ SAT: 256 variables and ~65000 clauses

o CP:

% All different on cells
constraint
alldifferent (i,j in 1..4)(magic[i.j]):

% sum in rows.
constraint forall (i in 1..4) (
sum(j in 1..4)(magic[i,j]) = 34);

% sum in columns.
constraint forall (j in 1..4) (
s) R R P (e o R T A

% sum in diagonals.

constraint
sum(i in 1..4)(magic[i,i]) = 34;
sum(i in 1..4)(magic[i,4—i+1]) = 34;

solve satisfy;

Slide from Christian Bessiere

68/85

Why using CP instead of SAT?

Pigeon Hole

* In 2010, SAT was not able to solve it with more than
15 pigeons (no polynomial-size proof)

e CP solves it in milliseconds

Slide from Christian Bessiére

69/85

Why using CP instead of ILP?

Employee shift rostering
Soft constraints

Nurse Rostering i

lyHH UMIMIH%H l l

Aolotetofers
27T el

O
7171

1
u—,v

Linear Programming: more than
10.000 lines

int: Q = 6; int: q0 = 1; set of int: STATES = 1..Q;
array[STATES,SHIFTS] of int: t =

o CP [12, 3,1 %statel

Ev)wﬂ
T

| 4, 4,1 % state 2
| 4,5, 1 % state 3
| 6, 6, 1 % state 4
| 6,0, 1 % state 5
| 8 0, 1]]; % state 6

array [NURSES,DAYS] of var SHIFTS: roster;

constraint forall(j in DAYS)(
sum{i in NURSES)(bool2int(roster[i,j] == d)) == req_day /\
sum(i in NURSES)(bool2int(roster[i,j] == n)) == req_night
)i
constraint forall(i in NURSES) (
regular([roster[i,j] | j in DAYS], Q, S, t, q@, STATES) /\
sum(j in DAYS)(bool2int(roster[i,j] = n)) >= min_night
)i

solve satisfy;

Slide from Christian Bessiére

70/85

Why using CP instead of ILP?

Sports League Scheduling

* In 1995, ILP was not able to solve the NHL problem
with more than 12 teams (NHL involves 30 teams)

* CP solved it up to 60 teams

Slide from Christian Bessiere

71/85

Why using CP instead of a dedicated approach?
~ Differential cryptanalysis of AES

Basic model in Picat:

basicModel(R, ObjStepl, DX, DY, DK) =>

DX = new_array(R,4,4), D)

DY = new_array(R-1,4,4), D .

DK = new_array(R,4,4), D) .1,

foreach (I in 1..R-1, J in 1..4, K in 1..4) %9966 ARK constraint
sum([DY[T,3,K],DK[I+1,3,K],DX[T+1,3,K11) #1= 1

end,

foreach(I in 1..R-1, K in 1..4) %0869 MC constraint

DX[I,1,K] + DX[I,2, (K mod 4)+1] + DX[I,3,((1+K) mod 4)+1] + DX[I,4, ((2+K) mod 4)+1] + DY[I,1,K] + DY[I,2,K] + DY[I,3,K] + DY[I,4,K] #= S,
S notin 1..4
end,
foreach(I in 2..R, 3 in 1..4) 566066 KS constraint
sum([DK[I-1,3,1],DK[I-1, (3 mod 4)+1,4],DK[I,3,1]]) #!= 1,
foreach(K in 2..4)
sum([DK[I-1,3,K],DKIT,3,K-11,DK[T,3,K]1]) #1= 1
end
end,
sum([[DX[I,3,K] : I in 1..R, 3 in 1..4, K in 1..4]) + sum([DK[I,3,4] : I in 1..R, J in 1..4]) #= ObjStepl.

Advanced model in Picat:
@ Less than 200 lines of code
@ Solve all instances in less than 4h (for keys of 128, 192, and 256 bits)
e Branch & Bound [Biryukov et al 2010] :
~+ Several days (weeks) for keys of 128 (192) bits

o Graph traversal [Fouque et al 2013] :
~» 30mn/12 cores for 128 bits, but 60GB of RAM

4
792/85

CP Langages and Libraries

@ ALICE [Jean-Louis Lauriére, 1976]
~ First CP approach

@ CHIP, Prolog V, Gnu-Prolog, Picat
~+ Extensions of Prolog

@ CHOCO (Java), Gecode (C++), OR-Tools (C++)
~ Open source libraries

@ OPL Development Studio (IBM)
~+ Modelling language + CP + MIP

73/85

Example: Choco code for the TSP

public void solveTSP(Graph g) {
Model model = new Model("TSP");

// Create variables
IntVar[] next = new IntVar[g.getNbVertices()];
for (int i = @; 1 < g.getNbVertices(); i++)
next[i] = model.intVar(g.getSucc(i));
IntVar[] cost = model.intVarArray(g.getNbVertices(), g.getMinCost(), g.getMaxCost());
IntVar totalCost = model.intVar(g.getNbVertices()*g.getMinCost(), g.getNbVertices(O*g.getMaxCost(

// Add constraints

for (int i = @; 1 < g.getNbVertices(); i++)
model.element(cost[i], g.getCost(i), next[i]).post(Q);

model.circuit(next,®).post(Q);

model.sum(cost, "=", totalCost).post();

// Solve

model.setObjective(Model .MINIMIZE, totalCost);
while (model.getSolver().solve());

74/85

© O N OO hA N =

o

Example: OPL model for the ATSP

Input Data:

range Points = 1..nbPoints;
int duree[Points][Points] =...

Variables :

dvar int visit[Points] in Points; /* visit[i] = iéme point visité x/

dvar int h[Points] in T; /* h[i] = heure d’arrivée sur i «/

v

Objective function to optimize and constraints:

minimize h[vya/];

subject to {
visit[1] == Vjpit; /% On part de Vpi */
h[Vinit] == to; /% a 1l"heure fy */
visit[nbPoints] == vji4/; /+ et on termine sur Vgpg */
allDifferent(visit); /% Chaque point est visité une fois x/
forall(i € 1..nbPoints — 1){

h{visit[i+1]] == h[visit[i]] + duree[visit[i]][visit[i+1]]
}

75/85

Generic Solving Algorithm

1 Function solve(X, D, C)
Input :ACSP (X,D,C)
Precondition 1 (X, D, C) is locally consistent
Postcondition : Return a solution of (X, D, C) or @ if no solution
if for each variable x; € X, |D(x;)| = 1 then return D;
Choose a variable x; € X such that |D(x;)| > 1
for each value v € D(x;) do
Save D and reduce D(x;) to {v}
if (X, D, C) is locally consistent then
Sol + solve(X, D, C)
if Sol # 0 then return So/;

9 Restore D

® N O O b WwN

10 return ()

76/85

Generic Solving Algorithm

1 Function solve(X, D, C)
Input :ACSP (X,D,C)
Precondition : (X, D, C)is locally consistent
Postcondition : Return a solution of (X, D, C) or @ if no solution
if for each variable x; € X, |D(x;)| = 1 then return D;
Choose a variable x; € X such that |D(x;)| > 1
for each value v € D(x;) do
Save D and reduce D(x;) to {v}
if (X, D, C) is locally consistent then
Sol + solve(X, D, C)
if Sol # 0 then return So/;

9 Restore D

® N O O b WwN

10 return ()

Local consistency of a CSP (X, D, C)
Check that each constraint can be satisfied
@ Different levels of consistency may be considered

@ Simplest consistency: check constraints whose variables have singleton
domains

76/85

Exercise

Map coloring:

4

CSP:
@ X={F,ESI
@ D(F) = {b, v},

D(E) ={b,j,r, v},
D(S) = D(l) = {b, r}

@ C={F+E,
F#S,
F 1,
S# I

Build the search tree (tree of the recursive calls to solve)
~+ Choose variables according to the order: F,E, S,/

77/85

Improvements of solve: Constraint propagation

Why propagating constraints?

@ Avoid encoutering several times a same inconsistency
~ Filter domains to ensure some given consistency
~ No recursive call if a domain is empty

@ Different consistency levels may be considered: Arc Consistency (AC),
k-consistency, Singleton AC, etc
~- Different strengthes and different complexities

Most popular consistency: AC

@ Let c be a constraint defined over a set X; of k variables. c is AC if:
Vx; € X, Vi € D(x;),Vx; € Xc \ {xi},3v; € D(x;) such that c is satisfied
by the assignment xy = vy, ..., xx = vk

@ Different algorithms for ensuring AC

e AC3 (binary constraints): O(ed®) in time; O(e) in space
e AC2001 (binary constraints): O(ed?) in time; O(ed) in space
e STR: O(t) in time and space (t = number of allowed tuples)

78/85

Exercise

CSP associated with map coloring (recall):
@ X={F,ESI}
@ D(F)={b,v}, D(E) = {v}, D(S) = D(l) = {b,r}
@ C={F#E,F£S F#I1.S#1}

Filter domains to ensure AC

70/85

Improvements of solve: Learning from failures

What can we do when a domain becomes empty?
@ backirack: Go back to the last call

@ backjump: Go back to the call that assigned the last variable involved in
the failure

@ Learn nogoods: Add the failure cause to constraints

Example
@ X= {X1,X2,X3,X4,X5}
@ D(xq1) ={5,6}, D(x2) = {2,3}, D(x3) = {3,4}, D(xs) = D(xs5) = {4,5}

@ All variables must be assigned to different values

80/85

© N O U bR w N =

Improvements of solve: Ordering heuristics

Function solve(X, D, C)

if for each variable x; € X, |D(x;)| = 1 then return D;
Choose a variable x; € X such that |D(x;)| > 1
for each value v € D(x;) do
Save D and reduce D(x;) to {v}
if (X, D, C) locally consistent then
Sol + solve(X, D, C)
if Sol # () then return So/;

Restore D

| return(

Variable ordering heuristics

deg: Variable involved in the largest number of constraints
~ Reduce tree depth

dom: Variable with the smallest domain
~ Reduces tree width

‘é,‘;’; Compromise between dom and deg
Wdeg' Each constraint has a weight (incremented on failures)

~- divide |D(x;)| by sum of weights of constraints associated with x;

© N O U bW N =

Improvements of solve: Ordering heuristics

Function solve(X, D, C)
if for each variable x; € X, |D(x;)| = 1 then return D;
Choose a variable x; € X such that |D(x;)| > 1
for each value v € D(x;) do
Save D and reduce D(x;) to {v}
if (X, D, C) locally consistent then
Sol + solve(X, D, C)
if Sol # () then return So/;

Restore D

| return(

Value ordering heuristics

Choose values that are more likely to belong to solutions
~+ No universal heuristic

@ May be learned... but this may be expensive
@ Useless for proving inconsistency of infeasible instances

@ 95% of the solving time is spent on inconsistent sub-trees

81/85

Global constraints

What is a global constraint?

Constraint defined over a set of constraints (the cardinality of which is not
fixed)

Examples of global constraints:
@ allDifferent(x1, ..., Xp)
@ sum(xq,...,Xn, S)

@ atlLeast(xq,...,xn, k, V)

Why global constraints?
@ Ease modelling

@ Improve propagation:
~ filter more values and/or reduce time complexity

892/85

Decomposition of global constraints

How to decompose a global constraint?
Replace the constraint with an equivalent set of non global constraints

Example 1: allDifferent(x, ..., x,)
° Vi,je [1,”],/75]':X,';£Xj

Example 2: atLeast(x,..., xn, k, V)
Introduction of n new variables sy, ..., s, such that D(x;) = [0,]
@ 5 = (X1 == V)
@ Vie [2,[7] 1S =81+ (X,‘ == V)
@ s, >k |
Example 3: sum(x1,...,Xp, S)
Introduction of n new variables sy, ..., s,
@ 51 =X

@ Vie[2,n: s =Si_1+X
o SZSn

813/85

Propagation of global constraints

AC-decomposable constraint

There exists a polynomial size decomposition such that the decomposition is
AC iff the global constraint is AC

Example: atLeast(x, ..., xn, k, v) is AC-decomposable

Propagating the constraints s; = s;_1 + (x; == v) filters the same values as
propagating atlLeast(x, ..., Xs, Kk, v), but more efficiently

Example: sum(xy,..., X,, S) is not AC-decomposable
Proof: deciding if an instance of sum is AC is an N'P-hard problem

What about allDifferent?
@ The binary decomposition filters less values
@ Deciding if an instance of allDifferentis AC is in P

@ Can we find a decomposition that preserves AC?
~ No!

84/85

Dedicated filtering algorithms

What can we do when a constraint is neither N’P-hard nor
AC-decomposable?

~» Implement a propagation algorithm that ensures AC in polynomial time!

v

Propagation of allDifferent
~+ Matching algorithm of Hopcroft and Karp (1973)

aliDifferent(xq, X2, X3, X4)

@ D(x1)=1{1,2,4}

® D(x) = {2,3)
@ D(x;) = {2,3}
® D(x:) = {3,4,5)

Figure from Christian Bessiére

85/85

Dedicated filtering algorithms

What can we do when a constraint is neither N’P-hard nor
AC-decomposable?

~» Implement a propagation algorithm that ensures AC in polynomial time!

Propagation of allDifferent
~+ Matching algorithm of Hopcroft and Karp (1973)

allDifferent(xq, X2, X3, X4)

® D(x1) ={1,2,4}
~> remove 2 from D(x1)

@ D(x2) ={2,3}
@ D(x3) ={2,3}

@ D(x4) ={3,4,5}
~» remove 3 from D(x4)

Figure from Christian Bessiere

85/85

	Context: Prescriptive Analytics for Urban Deliveries
	What kind of Data can we exploit?
	Optimisation with Time-Dependent Data
	Optimisation with uncertain data
	Conclusion
	Parenthesis on Constrained Optimization

