
Boosting Local Search with Artificial Ants

Christine Solnon

LISI - University Lyon 1 - 43 bd du 11 novembre
69 622 Villeurbanne cedex, France
csolnon@bat710.univ-lyon1.fr

Local Search: Incomplete approaches for solving CSPs are usually based on lo-
cal search —or neighborhood search— techniques [4]: the idea is to start from an
inconsistent complete assignment of values to the variables, and then gradually
and iteratively repair it by changing some variable-value assignments, prefer-
ably towards better ones. One of the main problems with local search is that it
may get stuck in local optima, i.e., complete assignments that cannot be locally
improved by changing one conflicting variable/value assignment, and that are
not globally optimal. Therefore, local search has been combined with different
meta-heuristics in order to help it escape from local optima, e.g., simulated an-
nealing or tabu search [2]. Local search has proved to be effective and efficient to
solve very large CSPs. However, like complete search, it often has more difficul-
ties in solving problems that are within the phase transition region —where the
solvable probability is around 50%. Indeed, before the phase transition region,
problems are weakly constrained and have many solutions so that local search
can usually easily find one. On the other side, beyond the phase transition re-
gion, problems are hardly constrained and only have few solutions, but they also
have much less local optima so that local search can more easily reach a solution
without being trapped in local optima [7]. Between these two “easy” regions,
search space landscapes of problems contain more local minima so that local
search is more often trapped in these local minima and, even when using some
meta-heuristics for escaping from them, local search often “walks” from a local
minimum to another without finding a global minimum.

Motivations: A main motivation of the work presented in this paper is to
provide a way of taking benefit of the different local minima found by local
search in order to guide it towards the most promising states of the search
space. Indeed, a study of the shape of the search space of many combinatorial
optimization problems has shown a high correlation between the quality of a
local minimum and its distance to the closest global minimum, i.e., the better
the local minimum, the closer to a global minimum [3]. To perform this task,
we use the Ant Colony Optimization (ACO) metaheuristics [1]. The main idea
of ACO is to model the problem as the search of a best path in a graph that
represents the states of the problem. Artificial ants walk through this graph,
looking for good paths. They communicate by laying pheromone trails on edges
of the graph, and they choose their path with respect to probabilities that depend
on the amount of pheromone previously left. In our context of CSP solving, we

T. Walsh (Ed.): CP 2001, LNCS 2239, pp. 620–624, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Boosting Local Search with Artificial Ants 621

propose to use pheromone to keep track of the best local minima found, in
order to guide the search when constructing new assignments to be repaired,
as heuristics for choosing values to be assigned to variables. One should remark
that this approach is complementary to other meta-heuristics, such as simulated
annealing or tabu search, that aim at helping local search to escape from local
optima.

Definitions and notations: A CSP is defined by a triple (X, D, C) such that
X is a finite set of variables, D is a function which maps every variable to its
finite domain and C is a set of constraints. A label, denoted by <Xi, vi>, is a
variable-value pair which represents the assignment of value vi to variable Xi.
A compound label, denoted by A = {<X1, v1>, . . . , <Xk, vk>}, is a set of labels
and corresponds to the simultaneous assignment of values v1, . . . , vk to variables
X1, . . . , Xk respectively. A complete compound label is a compound label that
contains a label for each variable of the CSP. The valuation of a compound label
A is defined by the number of violated constraints in A. A solution of a CSP is
a complete compound label the valuation of which is 0.

Many real-life CSPs are over-constrained, so that no solution exists. Hence,
the general CSP framework has been generalized to the partial or maximal con-
straint satisfaction problem —max-CSP. In this case, the goal is no longer to find
a consistent solution, but to find a complete assignment which maximizes the
number of satisfied constraints. In this paper, we implicitely solve max-CSPs.

Overall description of Ant-solver. We propose to use the ACO meta-heu-
ristics for guiding local search —when constructing a new complete assignment
to be repaired— towards the most promising areas of the search space. The
algorithm, called Ant-solver, is sketched in figure 1.

procedure Ant-solver(X, D, C)
τ ← InitializePheromoneTrails()
repeat

for k in 1..nbAnts do
Ak ← ∅
while | Ak |<| X | do

Xj ← SelectVariable(X,Ak)
v ← ChooseValue(τ, Xj , D(Xj),Ak)
Ak ← Ak ∪ {<Xj , v>}

end while
Ak ← ApplyLocalSearch(Ak)

end for
τ ← UpdatePheromoneTrails(τ, {A1, . . . ,AnbAnts})

until valuation(Ai) = 0 for some i ∈ {1..nbAnts} or max cycles reached

Fig. 1. Ant-solver algorithmic scheme

622 C. Solnon

At each cycle of this algorithm, every ant constructs a complete assignment
Ak, i.e., it iteratively selects a variable Xj and chooses a value v for this variable.
Then, the constructed assignment is improved by applying some local search
techniques. Finally, pheromone trails are updated with respect to the different
local minima computed during the current cycle. We shall now briefly describe
the pheromone graph on which artificial ants lay pheromone trails, and the
different functions used in Ant-solver. More details can be found in [6].

Pheromone graph: The pheromone graph associates a vertex with each vari-
able/value pair <Xi, v > such that Xi ∈ X and v ∈ D(Xi). There is a non
oriented edge between any pair of vertices corresponding to two different vari-
ables. The amount of pheromone laying on an edge (<Xi, v>, <Xj , w>) is noted
τ(< Xi, v >, < Xj , w >). Intuitively, this amount of pheromone represents the
learned desirability of assigning simultaneously value v to variable Xi and value
w to variable Xj .

SelectVariable(X, Ak): This function returns a variable Xj ∈ X that is not
yet assigned in Ak. This choice can be performed randomly, or with respect to
some commonly used variable ordering, such as the smallest-domain ordering,
which selects a variable that has the smallest number of consistant values with
respect to some given partial consistency.

ChooseValue(τ, Xj, D(Xj), Ak): This function returns a value v ∈ D(Xj)
to be assigned to Xj . The choice of v is done with respect to a probability
p(v, τ, Xj , D(Xj),Ak) which depends on two factors: the pheromone factor P —
which evaluates the learned desirability of v— and the quality factor Q—which
evaluates the number of conflicts of v with the already assigned variables:

p(v, τ, Xj , D(Xj),Ak) =
[P(τ,Ak, Xj , v)]α[Q(Ak, Xj , v)]β

∑
w∈D(Xj)[P(τ,Ak, Xj , w)]α[Q(Ak, Xj , w)]β

where α and β are two parameters which determine the relative importance of
pheromone and quality factors; the pheromone factor P(τ,Ak, Xj , v) corresponds
to the sum of all pheromone trails laid on all edges between <Xj , v> and the
labels in Ak, i.e., P(τ,Ak, Xj , v) =

∑
<Xl,m>∈Ak

τ(<Xl, m>, <Xj , v>); and
the quality factor Q(Ak, Xj , v) is inversely proportional to the number of new
violated constraints when assigning value v to variable Xj , i.e., Q(Ak, Xj , v) =
1/(1+valuation({<Xj , v>} ∪ Ak)−valuation(Ak)).

ApplyLocalSearch(Ak): This function allows one to improve the constructed
assignment Ak by performing some local search, i.e., by iteratively changing
some variable-value assignments. Different heuristics can be used to choose the
variable to be repaired and the new value to be assigned to this variable (see, e.g.,
[2] for an experimental comparison of some of these heuristics). The approach
proposed in this paper can be applied to any local search algorithm for solving
CSP and is independant from heuristics used to select the repair to be performed.

Boosting Local Search with Artificial Ants 623

UpdatePheromoneTrails(τ, {A1, . . . , AnbAnts}): This function updates the
amount of pheromone laying on each edge according to the ACO meta-heuristics,
i.e., all pheromone trails are uniformely decreased —in order to simulate some
kind of evaporation that allows ants to progressively forget worse paths— and
then pheromone is added on edges participating to the construction of the best
local minimum —in order to further attract ants towards the corresponding area
of the search space. Hence, at the end of each cycle, the quantity of pheromone
laying on each edge (i, j) is updated as follows:

τ(i, j)← ρ ∗ τ(i, j)
if i ∈ ABest and j ∈ ABest then τ(i, j)← τ(i, j) + 1

valuation(ABest)
if τ(i, j) < τmin then τ(i, j)← τmin

if τ(i, j) > τmax then τ(i, j)← τmax

where ρ is the trail persistence parameter such that 0 ≤ ρ ≤ 1, ABest is the
best assignment of {A1, . . . ,AnbAnts}, and τmin and τmax are bounds, such that
0 ≤ τmin ≤ τmax.

InitializePheromoneTrails(): Pheromone trails can be initialized to a con-
stant value, e.g., τmax, as proposed in [5]. However, Ant-solver can be boosted
by introducing a preprocessing step. The idea is to collect a significant number
of local minima by performing “classical” local search, i.e., by iteratively con-
structing complete compound labels —without using pheromone— and repairing
them. For easy problems, that are far enough from the phase transition region,
local search usually quickly find solutions, so that this preprocessing step stops
iterating on a success, and the whole algorithm terminates. However, for harder
problems within the phase transition region, local search may be successively
trapped in local minima without finding a solution. In this case, the goal of the
preprocessing step is to collect a representative set of local minima, thus consti-
tuting a kind of sampling of the search space. Then, we select from this sample
set the best local minima and we use them to initialize pheromone trails.

Experiments on Random Binary CSPs: Ant-solver has been implemented
in C++. For all experiments reported below, we have used the smallest-domain
ordering as the variable selection rule, and the min-conflict heuristics [4] for the
local search procedure. Parameters have been setted to τmin = 0.01, τmax = 4,
α = 3, β = 10, ρ = 0.98 and nbAnts = 8. Figure 2 reports experimental results
for solving random binary CSPs with 100 variables, 8 values in each variable
domain, a connectivity (p1) successively equals to 0.05 and 0.14 and different
tightness values (p2) around the phase transition. For each tightness, we report
average results on 100 feasible problem instances. We successively display, for
Local Search (LS) and Ant-Solver (AS), the success rate within a same limit of
time (300s for p1 = 0.05 and 1000s for p1 = 0.14), the CPU time (in seconds)
spent to find a solution and the corresponding number of repairs (in thousands
of repairs).

624 C. Solnon

Problems with connectivity p1 = 0.05 Problems with connectivity p1 = 0.14
Succ rate CPU Time Nb of repairs Succ rate CPU Time Nb of repairs

p2 LS AS LS AS LS AS p2 LS AS LS AS LS AS
0.38 100 100 0.1 0.1 9K 11K 0.19 100 100 0.7 0.8 20K 24K
0.40 100 100 2.5 2.2 123K 102K 0.20 100 100 17.6 14.6 424K 291K
0.42 100 100 4.0 4.9 177K 170K 0.21 86 100 41.5 17.9 926K 309K
0.44 88 100 39.9 9.6 1 824K 313K 0.22 54 99 107.3 40.5 2 566K 491K
0.46 57 100 55.7 14.1 2 604K 402K 0.23 28 97 183.5 62.1 4 060K 665K
0.48 50 100 43.0 10.8 2 044K 376K 0.24 34 98 141.3 63.8 3 593K 661K
0.50 82 100 38.8 9.6 1 948K 419K 0.25 40 99 117.4 37.1 2 681K 513K
0.52 87 100 20.4 8.4 989K 412K 0.26 47 100 69.4 22.4 1 621K 414K
0.54 94 100 14.7 3.9 789K 216K 0.27 69 100 30.5 12.2 746K 290K

Fig. 2. Experimental results on < 100, 8, p1, p2 > binary random CSPs

One can remark that, on the easiest problems, that are far enough from
the phase transition region Ant-solver and local search have comparable results:
for these problems, solutions are nearly always found during the preprocessing
step, after the computation of very few complete compound labels. However, on
the hardest problems that are within the phase transition region, Ant-solver is
always much more successful and efficient than local search, showing that ACO
actually allows one to boost the resolution.

References

1. M. Dorigo, G. Di Caro and L. M. Gambardella. Ant Algorithms for Discrete Opti-
mization. Artificial Life, 5(2):137–172, 1999

2. J.K. Hao and R. Dorne. Empirical studies of heuristic local search for constraint
solving. In Proceedings of CP’96, LNCS 1118, Springer Verlag, pages 194–208, 1996

3. P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm design. In
D. Corne and M. Dorigo and F. Glover, editors, New Ideas in Optimization, pages
245–260. McGraw Hill, UK, 1999

4. S. Minton, M.D. Johnston, A.B. Philips and P. Laird. Minimizing Conflicts: a
Heuristic Repair Method for Constraint Satistaction and Scheduling Problems. Ar-
tificial Intelligence, 58:161–205, 1992

5. T. Stutzle and H.H. Hoos. MAX-MIN Ant System. Journal of Future Generation
Computer Systems, 16:889–914, 2000

6. C. Solnon. Boosting Local Search with Artificial Ants (long paper). Research Report,
LISI, 15 pages, 2001

7. M. Yokoo. Why adding more constraints makes a problem easier for hill-climbing
algorithms: analyzing landscapes of CSPs. In Proceedings of CP’97, LNCS 1330,
Springer Verlag, pages 356–370, 1997

